Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

Overview

counterfactual-tpp

This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes.

Pre-requisites

This code depends on the following packages:

  1. networkx
  2. numpy
  3. pandas
  4. matplotlib

to generate map plots:

  1. GeoPandas
  2. geoplot

Code structure

  • src/counterfactual_tpp.py: Contains the code to sample rejected events using the superposition property and the algorithm to calculate the counterfactuals.
  • src/gumbel.py: Contains the utility functions for the Gumbel-Max SCM.
  • src/sampling_utils.py: Contains the code for the Lewis' thinning algorithm (thinning_T function) and some other sampling utilities.
  • src/hawkes/hawkes.py: Contains the code for sampling from the hawkes process using the superposition property of tpps. It also includes the algorithm for sampling a counterfactual sequence of events given a sequence of observed events for a Hawkes process.
  • src/hawkes/hawkes_example.ipynb: Contains an example of running algorithm 3 (in the paper) for both cases where we have (1) both observed and un-observed events, and (2) the case that we have only the observed events.
  • ebola/graph_generation.py: Contains code to build the Ebola network based on the network of connected districts. This code is adopted from the disease-control project.
  • ebola/dynamics.py: Contains code for sampling counterfactual sequence of infections given a sequence of observed infections from the SIR porcess (the calculate_counterfactual function). The rest of the code is adopted from the disease-control project, which simulates continuous-time SIR epidemics with exponentially distributed inter-event times.

The directory ebola/data/ebola contains the information about the Ebola network adjanceny matrix and the cleaned ebola outbreak data adopted from the disease-control project.

The directory ebola/map/geojson contains the geographical information of the districts studied in the Ebola outbreak dataset. The geojson files are obtained from Nominatim.

The directory ebola/map/overall_data contains data for generating the geographical maps in the paper, and includs the overall number of infection under applying different interventions.

The directories src/data_hawkes and src/data_inhomogeneous contain observational data used to generate Synthetic plots in the paper. You can use this data to re-generate paper's plots. Otherwise, you can simply generate new random samples by the code.

Experiments

Synthetic

Epidemiological

Citation

If you use parts of the code in this repository for your own research, please consider citing:

@article{noorbakhsh2021counterfactual,
        title={Counterfactual Temporal Point Processes},
        author={Noorbakhsh, Kimia and Gomez-Rodriguez, Manuel},
        journal={arXiv preprint arXiv:2111.07603},
        year={2021}
}
Owner
Networks Learning
Networks Learning group at MPI-SWS
Networks Learning
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022