LibMTL: A PyTorch Library for Multi-Task Learning

Overview

LibMTL

Documentation Status License: MIT PyPI version Supported Python versions Downloads CodeFactor Maintainability Made With Love

LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and API instructions.

Star us on GitHub — it motivates us a lot!

Table of Content

Features

  • Unified: LibMTL provides a unified code base to implement and a consistent evaluation procedure including data processing, metric objectives, and hyper-parameters on several representative MTL benchmark datasets, which allows quantitative, fair, and consistent comparisons between different MTL algorithms.
  • Comprehensive: LibMTL supports 84 MTL models combined by 7 architectures and 12 loss weighting strategies. Meanwhile, LibMTL provides a fair comparison on 3 computer vision datasets.
  • Extensible: LibMTL follows the modular design principles, which allows users to flexibly and conveniently add customized components or make personalized modifications. Therefore, users can easily and fast develop novel loss weighting strategies and architectures or apply the existing MTL algorithms to new application scenarios with the support of LibMTL.

Overall Framework

framework.

  • Config Module: Responsible for all the configuration parameters involved in the running framework, including the parameters of optimizer and learning rate scheduler, the hyper-parameters of MTL model, training configuration like batch size, total epoch, random seed and so on.
  • Dataloaders Module: Responsible for data pre-processing and loading.
  • Model Module: Responsible for inheriting classes architecture and weighting and instantiating a MTL model. Note that the architecture and the weighting strategy determine the forward and backward processes of the MTL model, respectively.
  • Losses Module: Responsible for computing the loss for each task.
  • Metrics Module: Responsible for evaluating the MTL model and calculating the metric scores for each task.

Supported Algorithms

LibMTL currently supports the following algorithms:

  • 12 loss weighting strategies.
Weighting Strategy Venues Comments
Equally Weighting (EW) - Implemented by us
Gradient Normalization (GradNorm) ICML 2018 Implemented by us
Uncertainty Weights (UW) CVPR 2018 Implemented by us
MGDA NeurIPS 2018 Referenced from official PyTorch implementation
Dynamic Weight Average (DWA) CVPR 2019 Referenced from official PyTorch implementation
Geometric Loss Strategy (GLS) CVPR 2019 workshop Implemented by us
Projecting Conflicting Gradient (PCGrad) NeurIPS 2020 Implemented by us
Gradient sign Dropout (GradDrop) NeurIPS 2020 Implemented by us
Impartial Multi-Task Learning (IMTL) ICLR 2021 Implemented by us
Gradient Vaccine (GradVac) ICLR 2021 Spotlight Implemented by us
Conflict-Averse Gradient descent (CAGrad) NeurIPS 2021 Referenced from official PyTorch implementation
Random Loss Weighting (RLW) arXiv Implemented by us
  • 7 architectures.
Architecture Venues Comments
Hrad Parameter Sharing (HPS) ICML 1993 Implemented by us
Cross-stitch Networks (Cross_stitch) CVPR 2016 Implemented by us
Multi-gate Mixture-of-Experts (MMoE) KDD 2018 Implemented by us
Multi-Task Attention Network (MTAN) CVPR 2019 Referenced from official PyTorch implementation
Customized Gate Control (CGC) ACM RecSys 2020 Best Paper Implemented by us
Progressive Layered Extraction (PLE) ACM RecSys 2020 Best Paper Implemented by us
DSelect-k NeurIPS 2021 Referenced from official TensorFlow implementation
  • 84 combinations of different architectures and loss weighting strategies.

Installation

The simplest way to install LibMTL is using pip.

pip install -U LibMTL

More details about environment configuration is represented in Docs.

Quick Start

We use the NYUv2 dataset as an example to show how to use LibMTL.

Download Dataset

The NYUv2 dataset we used is pre-processed by mtan. You can download this dataset here.

Run a Model

The complete training code for the NYUv2 dataset is provided in examples/nyu. The file train_nyu.py is the main file for training on the NYUv2 dataset.

You can find the command-line arguments by running the following command.

python train_nyu.py -h

For instance, running the following command will train a MTL model with EW and HPS on NYUv2 dataset.

python train_nyu.py --weighting EW --arch HPS --dataset_path /path/to/nyuv2 --gpu_id 0 --scheduler step

More details is represented in Docs.

Citation

If you find LibMTL useful for your research or development, please cite the following:

@misc{LibMTL,
 author = {Baijiong Lin and Yu Zhang},
 title = {LibMTL: A PyTorch Library for Multi-Task Learning},
 year = {2021},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/median-research-group/LibMTL}}
}

Contributors

LibMTL is developed and maintained by Baijiong Lin and Yu Zhang.

Contact Us

If you have any question or suggestion, please feel free to contact us by raising an issue or sending an email to [email protected].

Acknowledgements

We would like to thank the authors that release the public repositories (listed alphabetically): CAGrad, dselect_k_moe, MultiObjectiveOptimization, and mtan.

License

LibMTL is released under the MIT license.

Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Syed Waqas Zamir 906 Dec 30, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022