Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Related tags

Deep LearningRot-Pro
Overview

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding

This repository contains the source code for the Rot-Pro model, presented at NeurIPS 2021 in the paper.

Requirements

  • Python 3.6+
  • Pytorch 1.1.x

Datasets

The repository includes the FB15-237, WN18RR, YAGO3-10, Counties S1/S2/S3 knowledge graph completion datasets, as well as transitivity subsets of YAGO3-10 mentioned in paper.

Hyper-parameters Usage of Rot-Pro

  • --constrains: set True if expect to constrain the range of parameter a, b to 0 or 1.
  • --init_pr: The percentage of relational rotation phase of (-π, π) when initialization. For example, set to 0.5 to constrain the initial relational rotation phase in (-π/2, π/2)
  • --train_pr: The percentage of relational rotation phase of (-π, π) when training. -- --trans_test: When do link prediction test on transitive set S1/ S2/ S3 on YAGO3-10, set it to the relative file path as "./trans_test/s1.txt"

Training Rot-Pro

This is a command for training a Rot-Pro model on YAGO3-10 dataset with GPU 0.
CUDA_VISIBLE_DEVICES=0 python -u codes/run.py --do_train
--cuda
--do_valid
--do_test
--data_path data/YAGO3-10
--model RotPro
--gamma_m 0.000001 --beta 1.5
-n 400 -b 1024 -d 500 -c True
-g 16.0 -a 1.0 -adv -alpha 0.0005
-lr 0.00005 --max_steps 500000
--warm_up_steps 200000
-save models/RotPro_YAGO3_0 --test_batch_size 4 -de

More details are illustrated in argparse configuration at codes/run.py

Testing Rot-Pro

An example for common link prediction on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model RotPro
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

An example for link prediction test on transitive set S1 on YAGO3-10. CUDA_VISIBLE_DEVICES=0 python -u codes/run.py
--cuda
--do_test
--data_path data/YAGO3-10
--model transRotatE
--trans_test trans_test/s1.txt
--init_checkpoint models/RotPro_YAGO3_0 --test_batch_size 4 -de

Citing this paper

If you make use of this code, or its accompanying paper, please cite this work as follows:

@inproceedings{song2021rotpro,
  title={Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding},
  author = {Tengwei Song and Jie Luo and Lei Huang},
  booktitle={Proceedings of the Thirty-Fifth Annual Conference on Advances in Neural Information Processing Systems ({NeurIPS})},
  year={2021}
}

Owner
Tewi
Tewi
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022