FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Related tags

Deep LearningFLSim
Overview

Federated Learning Simulator (FLSim)

Federated Learning Simulator (FLSim) is a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as computer vision and natural text. Currently FLSim supports cross-device FL, where millions of clients' devices (e.g. phones) traing a model collaboratively together.

FLSim is scalable and fast. It supports differential privacy (DP), secure aggregation (secAgg), and variety of compression techniques.

In FL, a model is trained collaboratively by multiple clients that each have their own local data, and a central server moderates training, e.g. by aggregating model updates from multiple clients.

In FLSim, developers only need to define a dataset, model, and metrics reporter. All other aspects of FL training are handled internally by the FLSim core library.

FLSim

Library Structure

FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

Installation

The latest release of FLSim can be installed via pip:

pip install flsim

You can also install directly from the source for the latest features (along with its quirks and potentially ocassional bugs):

git clone https://github.com/facebookresearch/FLSim.git
cd FLSim
pip install -e .

Getting started

To implement a central training loop in the FL setting using FLSim, a developer simply performs the following steps:

  1. Build their own data pipeline to assign individual rows of training data to client devices (to simulate data is distributed across client devices)
  2. Create a corresponding nn/Module model and wrap it in an FL model.
  3. Define a custom metrics reporter that computes and collects metrics of interest (e.g., accuracy) throughout training.
  4. Set the desired hyperparameters in a config.

Usage Example

Tutorials

To see the details, please refer to the tutorials that we have prepared.

Examples

We have prepared the runnable exampels for 2 of the tutorials above:

Contributing

See the CONTRIBUTING for how to contribute to this library.

License

This code is released under Apache 2.0, as found in the LICENSE file.

Comments
  • Bug Fix#36: fix imports in tests.

    Bug Fix#36: fix imports in tests.

    Types of changes

    • [x ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    Bug Fix#36: fix imports in tests.

    How Has This Been Tested (if it applies)

    pytest -ra is able to discover all tests now.

    Checklist

    • [x] The documentation is up-to-date with the changes I made.
    • [x] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [x ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by ghaccount 8
  • Vr

    Vr

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    How Has This Been Tested (if it applies)

    Checklist

    • [ ] The documentation is up-to-date with the changes I made.
    • [ ] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [ ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by JohnlNguyen 6
  • Move optimizer_test_utils to optimizers directory

    Move optimizer_test_utils to optimizers directory

    Summary: it is currently located at the top-level tests directory. However the top-level tests directory does not really make sense as each component is organized into its dedicated directory. optimizer_test_utils.py belongs to the optimizer directory in that sense. In this diff, we move the file to the optimizer directory and fixes the reference.

    Differential Revision: D32241821

    CLA Signed fb-exported Merged 
    opened by jessemin 3
  • Does the backend handle Federated learning asynchronously?

    Does the backend handle Federated learning asynchronously?

    I found this repo from this blog: - https://ai.facebook.com/blog/asynchronous-federated-learning/ However I do not find any mentioning on this repo and also I cannot decipher from the code examples whether this is synchronous version or asynchronous version of Federated learning? Can you please clarify this for me? And also if this is the asynchronous version how can I dive deeper in to the libraries and look at the code of implementation for the asynch handling mechanism?

    Thank you

    opened by 111Kaushal 2
  • Remove test_pytorch_local_dataset_factory

    Remove test_pytorch_local_dataset_factory

    Summary: This test had been very flaky about 1+ year ago an d never been revived since then. Deleting it from the codebase.

    Differential Revision: D32415979

    CLA Signed fb-exported Merged 
    opened by jessemin 2
  • FedSGD with virtual batching

    FedSGD with virtual batching

    🚀 Feature

    Motivation

    Create a memory efficient client to run FedSGD. If a client has many examples, running FedSGD (taking the gradient of the model based on all of the client's data) can lead to OOM. In this PR, we fix this problem by still calling optimizer.step once at the end of local training to simulate the effect of FedSGD.>

    opened by JohnlNguyen 0
  • Add Fednova as a benchmark

    Add Fednova as a benchmark

    Summary:

    What?

    Adding FedNova as a benchmark

    Why?

    FedNova is a well known paper that fixes the objective inconsistency problem

    Differential Revision: D34668291

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • Having to `import flsim.configs`  before creating config from json is unintuitive

    Having to `import flsim.configs` before creating config from json is unintuitive

    🚀 Feature

    This code works

    import flsim.configs <-- 
    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    This code doesn't work

    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    Motivation

    Having to import flsim.configs is unintuitive and not clear from the user perspective

    Pitch

    Alternatives

    Additional context

    opened by JohnlNguyen 0
  • Fix sent140 example

    Fix sent140 example

    Summary:

    What?

    Fix tutorial to word embedding to resolve the poor accuracy problem

    Why?

    https://github.com/facebookresearch/FLSim/issues/34

    Differential Revision: D34149392

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    ❓ Questions and Help

    Until we move the questions to another medium, feel free to use this as your question:

    Question

    I tried this tutorial https://github.com/facebookresearch/FLSim/blob/main/tutorials/sent140_tutorial.ipynb And accuracy is less that random guess (50%)!

    Any suggestions or approaches to improve accuracy for this tutorial?

    from tutorial: Running (epoch = 1, round = 1, global round = 1) for Test (epoch = 1, round = 1, global round = 1), Loss/Test: 0.8683878255035598 (epoch = 1, round = 1, global round = 1), Accuracy/Test: 49.61439588688946 {'Accuracy': 49.61439588688946}

    opened by ghaccount 0
Releases(v0.1.0)
  • v0.0.1(Dec 9, 2021)

    We are excited to announce the release of FLSim 0.0.1.

    Introduction

    How does one train a machine learning model without access to user data? Federated Learning (FL) is the technology that answers this question. In a nutshell, FL is a way for many users to learn a machine learning model without sharing data collaboratively. The two scenarios for FL, cross-silo and cross-device. Cross-silo provides technologies for collaborative learning between a few large organizations with massive silo datasets. Cross-device provides collaborative learning between many small user devices with small local datasets. Cross-device FL, where millions or even billions of users cooperate on learning a model, is a much more complex problem and attracted less attention from the research community. We designed FLSim to address the cross-device FL use case.

    Federated Learning at Scale

    Large-scale cross-device Federated Learning (FL) is a federated learning paradigm with several challenges that differentiate it from cross-silo FL: millions of clients coordinating with a central server and training instability due to the significant cohort problem. With these challenges in mind, we built FLSim to be scalable while easy to use, and FLSim can scale to thousands of clients per round using only 1 GPU. We hope FLSim will equip researchers to tackle problems with federated learning at scale.

    FLSim

    Library Structure

    FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

    Included Datasets

    Currently, FLSim supports all datasets from LEAF including FEMNIST, Shakespeare, Sent140, CelebA, Synthetic and Reddit. Additionally, we support MNIST and CIFAR-10.

    Included Algorithms

    FLSim supports standard FedAvg, and other federated learning methods such as FedAdam, FedProx, FedAvgM, FedBuff, FedLARS, and FedLAMB.

    What’s next?

    We hope FLSim will foster large-scale cross-device FL research. Soon, we plan to add support for personalization in early 2022. Throughout 2022, we plan to gather feedback and improve usability. We plan to continue to grow our collection of algorithms, datasets, and models.

    Source code(tar.gz)
    Source code(zip)
Owner
Meta Research
Meta Research
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022