[email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media" | PythonRepo" /> [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media" | PythonRepo">

This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Overview

Subreddit Analysis

This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by the Will?: Themes in online discussions of Fitness".

Installation and Requirements

You need to use Python 3.9, R 4.1.0 and git basically to run the scripts provided in this repo. For Ubuntu, to install essential dependencies:

sudo apt update
sudo apt install git python3.9 python3-pip
pip3 install virtualenv

Now clone this repo:

git clone https://github.com/gchochla/subreddit-analysis
cd subreddit-analysis

Create and activate a python environment to download the python requirements for the scripts:

~/.local/bin/virtualenv .venv
source .venv/bin/activate
pip install .

Usage

  1. Download a subreddit into a JSON that preserves the hierarchical structure of the posts by running:
python subreddit_analysis/subreddit_forest.py -r <SUBREDDIT_NAME>

where <SUBREDDIT_NAME> is the name of the subreddit after r/. You can also limit the number of submissions returned by setting -l <LIMIT>. The result can be found in the file <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.json.

  1. Transform this JSON to a rectangle (CSV), you can use:
python subreddit_analysis/json_forest_to_csv.py -fn <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.json

which creates <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.csv.

  1. To have a background corpus for control, you can download posts from the redditors that have posted in your desired subreddit from other subreddits:
python subreddit_analysis/user_baseline.py -fn <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift.json -pl 200

where -pl specifies the number of posts per redditor to fetch (before filtering the desired subreddit). The file is saved as <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift-baseline-<pl>.json

  1. Transform that as well to a CSV:
python subreddit_analysis/json_baseline_to_csv.py -fn <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift-baseline-<pl>.json

which creates <SUBREDDIT_NAME>-<NUM_OF_POSTS>-pushshift-baseline-<pl>.csv.

  1. Create a folder, <ROOT>, move the subreddit CSV to it, and create another folder inside it named dictionaries that includes a file (note: the filename -- with a possible extensions -- will be used as the header of the loading) per distributed dictionary with space-separated words:
positive joy happy excited
  1. Tokenize CSVs using the r_scripts.

  2. Compute each post's loadings and write it into the CSV:

python subreddit_analysis/submission_loadings.py -d <ROOT> -doc <CSV_FILENAME>

where <CSV_FILENAME> is relative to <ROOT>.

  1. If annotations are available, which should be in a CSV with (at least) a column for the labels themselves and the ID of the post with a post_id header, you can use these to design a data-driven distributed dictionary. You can first train an RNN to create another annotation file with a predicted label for each post with:
python subreddit_analysis/rnn.py --doc_filename <SUBREDDIT_CSV> --label_filename <ANNOTATION_CSV> --label_column <LABEL_HEADER_1> <LABEL_HEADER_2> ... <LABEL_HEADER_N> --out_filename <NEW_ANNOTATION_CSV>

where you can provide multiple labels for multitasking, thought the model provides predictions only for the first specified label for now. Finally, if annotations are ordinal, you can get learned coefficients from Ridge Regression for each word in the vocabulary of all posts (in descending order of importance) using a tf-idf model to represent each document using:

python subreddit_analysis/bow_model.py --doc_filename <SUBREDDIT_CSV> --label_filename <ANY_ANNOTATION_CSV> --label_column <LABEL_HEADER> --out_filename <IMPORTANCE_CSV>
  1. Run analyses using r_scripts.
Owner
Georgios Chochlakis
ML researcher; CS PhD student @ Uni of Southern California
Georgios Chochlakis
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022