Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Overview

Focal Transformer

PWC PWC PWC PWC PWC PWC

This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transformers", by Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan and Jianfeng Gao.

Introduction

focal-transformer-teaser

Our Focal Transfomer introduced a new self-attention mechanism called focal self-attention for vision transformers. In this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively.

With our Focal Transformers, we achieved superior performance over the state-of-the-art vision Transformers on a range of public benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.6 and 84.0 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art methods for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation.

Benchmarking

Image Classification on ImageNet-1K

Model Pretrain Use Conv Resolution [email protected] [email protected] #params FLOPs Checkpoint Config
Focal-T IN-1K No 224 82.2 95.9 28.9M 4.9G download yaml
Focal-T IN-1K Yes 224 82.7 96.1 30.8M 4.9G download yaml
Focal-S IN-1K No 224 83.6 96.2 51.1M 9.4G download yaml
Focal-B IN-1K No 224 84.0 96.5 89.8M 16.4G download yaml

Object Detection and Instance Segmentation on COCO

Mask R-CNN

Backbone Pretrain Lr Schd #params FLOPs box mAP mask mAP
Focal-T ImageNet-1K 1x 49M 291G 44.8 41.0
Focal-T ImageNet-1K 3x 49M 291G 47.2 42.7
Focal-S ImageNet-1K 1x 71M 401G 47.4 42.8
Focal-S ImageNet-1K 3x 71M 401G 48.8 43.8
Focal-B ImageNet-1K 1x 110M 533G 47.8 43.2
Focal-B ImageNet-1K 3x 110M 533G 49.0 43.7

RetinaNet

Backbone Pretrain Lr Schd #params FLOPs box mAP
Focal-T ImageNet-1K 1x 39M 265G 43.7
Focal-T ImageNet-1K 3x 39M 265G 45.5
Focal-S ImageNet-1K 1x 62M 367G 45.6
Focal-S ImageNet-1K 3x 62M 367G 47.3
Focal-B ImageNet-1K 1x 101M 514G 46.3
Focal-B ImageNet-1K 3x 101M 514G 46.9

Other detection methods

Backbone Pretrain Method Lr Schd #params FLOPs box mAP
Focal-T ImageNet-1K Cascade Mask R-CNN 3x 87M 770G 51.5
Focal-T ImageNet-1K ATSS 3x 37M 239G 49.5
Focal-T ImageNet-1K RepPointsV2 3x 45M 491G 51.2
Focal-T ImageNet-1K Sparse R-CNN 3x 111M 196G 49.0

Semantic Segmentation on ADE20K

Backbone Pretrain Method Resolution Iters #params FLOPs mIoU mIoU (MS)
Focal-T ImageNet-1K UPerNet 512x512 160k 62M 998G 45.8 47.0
Focal-S ImageNet-1K UPerNet 512x512 160k 85M 1130G 48.0 50.0
Focal-B ImageNet-1K UPerNet 512x512 160k 126M 1354G 49.0 50.5
Focal-L ImageNet-22K UPerNet 640x640 160k 240M 3376G 54.0 55.4

Getting Started

Citation

If you find this repo useful to your project, please consider to cite it with following bib:

@misc{yang2021focal,
    title={Focal Self-attention for Local-Global Interactions in Vision Transformers}, 
    author={Jianwei Yang and Chunyuan Li and Pengchuan Zhang and Xiyang Dai and Bin Xiao and Lu Yuan and Jianfeng Gao},
    year={2021},
    eprint={2107.00641},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Acknowledgement

Our codebase is built based on Swin-Transformer. We thank the authors for the nicely organized code!

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022