Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Overview

PWC

PWC

PWC

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang and Xubo Song.

This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for SenFormer.


💾 Code Snippet (SenFormer)| ⌨️ Code Snippet (FPNT)| 📜 Paper | 论文

🔨 Installation

Conda environment

  • Clone this repository and enter it: git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer.
  • Create a conda environment conda create -n senformer python=3.8, and activate it conda activate senformer.
  • Install Pytorch and torchvision conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch — (you may also switch to other version by specifying the version number).
  • Install MMCV library pip install mmcv-full==1.4.0
  • Install MMSegmentation library by running pip install -e . in SenFormer directory.
  • Install other requirements pip install timm einops

Here is a full script for setting up a conda environment to use SenFormer (with CUDA 10.2 and pytorch 1.7.1):

conda create -n senformer python=3.8
conda activate senformer
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch

git clone [email protected]:WalBouss/SenFormer.git && cd SenFormer
pip install mmcv-full==1.4.0
pip install -e .
pip install timm einops

Datasets

For datasets preparations please refer to MMSegmentation guidelines.

Pretrained weights

ResNet pretrained weights will be automatically downloaded before training.

For Swin Transformer ImageNet pretrained weights, you can either:

  • run bash tools/download_swin_weights.sh in SenFormer project to download all Swin Transformer pretrained weights (it will place weights under pretrain/ folder ).
  • download desired backbone weights here: Swin-T, Swin-S, Swin-B, Swin-L and place them under pretrain/ folder.
  • download weights from official repository then, convert them to mmsegmentation format following mmsegmentation guidelines.

🎯 Model Zoo

SenFormer models with ResNet and Swin's backbones and ADE20K, COCO-Stuff 10K, Pascal Context and Cityscapes.

ADE20K

Backbone mIoU mIoU (MS) #params FLOPs Resolution Download
ResNet-50 44.6 45.6 144M 179G 512x512 model config
ResNet-101 46.5 47.0 163M 199G 512x512 model config
Swin-Tiny 46.0 46.4 144M 179G 512x512 model config
Swin-Small 49.2 50.4 165M 202G 512x512 model config
Swin-Base 51.8 53.2 204M 242G 640x640 model config
Swin-Large 53.1 54.2 314M 546G 640x640 model config

COCO-Stuff 10K

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 39.0 39.7 144M 512x512 model config
ResNet-101 39.6 40.6 163M 512x512 model config
Swin-Large 49.1 50.1 314M 512x512 model config

Pascal Context

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 53.2 54.3 144M 480x480 model config
ResNet-101 55.1 56.6 163M 480x480 model config
Swin-Large 62.4 64.0 314M 480x480 model config

Cityscapes

Backbone mIoU mIoU (MS) #params Resolution Download
ResNet-50 78.8 80.1 144M 512x1024 model config
ResNet-101 80.3 81.4 163M 512x1024 model config
Swin-Large 82.2 83.3 314M 512x1024 model config

🔭 Inference

Download one checkpoint weights from above, for example SenFormer with ResNet-50 backbone on ADE20K:

Inference on a dataset

# Single-gpu testing
python tools/test.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file

# Multi-gpu testing
./tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM>

# Multi-gpu, multi-scale testing
tools/dist_test.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py /path/to/checkpoint_file <GPU_NUM> --aug-test

Inference on custom data

To generate segmentation maps for your own data, run the following command:

python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE}

Run python demo/image_demo.py --help for additional options.

🔩 Training

Follow above instructions to download ImageNet pretrained weights for backbones and run one of the following command:

# Single-gpu training
python tools/train.py path/to/model/config 

# Multi-gpu training
./tools/dist_train.sh path/to/model/config <GPU_NUM>

For example to train SenFormer with a ResNet-50 as backbone on ADE20K:

# Single-gpu training
python tools/train.py senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py 

# Multi-gpu training
./tools/dist_train.sh senformer_configs/senformer/ade20k/senformer_fpnt_r50_512x512_160k_ade20k.py <GPU_NUM>

Note that the default learning rate and training schedule is for an effective batch size of 16, (e.g. 8 GPUs & 2 imgs/gpu).

Acknowledgement

This code is build using MMsegmentation library as codebase and uses timm and einops as well.

📚 Citation

If you find this repository useful, please consider citing our work 📝 and giving a star 🌟 :

@article{bousselham2021senformer,
  title={Efficient Self-Ensemble Framework for Semantic Segmentation},
  author={Walid Bousselham, Guillaume Thibault, Lucas Pagano, Archana Machireddy, Joe Gray, Young Hwan Chang, Xubo Song},
  journal={arXiv preprint arXiv:2111.13280},
  year={2021}
}
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021