[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Overview

Context Encoders: Feature Learning by Inpainting

CVPR 2016

[Project Website] [Imagenet Results]

Sample results on held-out images:

teaser

This is the training code for our CVPR 2016 paper on Context Encoders for learning deep feature representation in an unsupervised manner by image inpainting. Context Encoders are trained jointly with reconstruction and adversarial loss. This repo contains quick demo, training/testing code for center region inpainting and training/testing code for arbitray random region inpainting. This code is adapted from an initial fork of Soumith's DCGAN implementation. Scroll down to try out a quick demo or train your own inpainting models!

If you find Context Encoders useful in your research, please cite:

@inproceedings{pathakCVPR16context,
    Author = {Pathak, Deepak and Kr\"ahenb\"uhl, Philipp and Donahue, Jeff and Darrell, Trevor and Efros, Alexei},
    Title = {Context Encoders: Feature Learning by Inpainting},
    Booktitle = {Computer Vision and Pattern Recognition ({CVPR})},
    Year = {2016}
}

Contents

  1. Semantic Inpainting Demo
  2. Train Context Encoders
  3. Download Features Caffemodel
  4. TensorFlow Implementation
  5. Project Website
  6. Download Dataset

1) Semantic Inpainting Demo

  1. Install Torch: http://torch.ch/docs/getting-started.html#_

  2. Clone the repository

git clone https://github.com/pathak22/context-encoder.git
  1. Demo
cd context-encoder
bash ./models/scripts/download_inpaintCenter_models.sh
# This will populate the `./models/` folder with trained models.

net=models/inpaintCenter/paris_inpaintCenter.t7 name=paris_result imDir=images/paris overlapPred=4 manualSeed=222 batchSize=21 gpu=1 th demo.lua
net=models/inpaintCenter/imagenet_inpaintCenter.t7 name=imagenet_result imDir=images/imagenet overlapPred=4 manualSeed=222 batchSize=21 gpu=1 th demo.lua
net=models/inpaintCenter/paris_inpaintCenter.t7 name=ucberkeley_result imDir=images/ucberkeley overlapPred=4 manualSeed=222 batchSize=4 gpu=1 th demo.lua
# Note: If you are running on cpu, use gpu=0
# Note: samples given in ./images/* are held-out images

2) Train Context Encoders

If you could successfully run the above demo, run following steps to train your own context encoder model for image inpainting.

  1. [Optional] Install Display Package as follows. If you don't want to install it, then set display=0 in train.lua.
luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
cd ~
th -ldisplay.start 8000
# if working on server machine create tunnel: ssh -f -L 8000:localhost:8000 -N server_address.com
# on client side, open in browser: http://localhost:8000/
  1. Make the dataset folder.
mkdir -p /path_to_wherever_you_want/mydataset/train/images/
# put all training images inside mydataset/train/images/
mkdir -p /path_to_wherever_you_want/mydataset/val/images/
# put all val images inside mydataset/val/images/
cd context-encoder/
ln -sf /path_to_wherever_you_want/mydataset dataset
  1. Train the model
# For training center region inpainting model, run:
DATA_ROOT=dataset/train display_id=11 name=inpaintCenter overlapPred=4 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=128 gpu=1 th train.lua

# For training random region inpainting model, run:
DATA_ROOT=dataset/train display_id=11 name=inpaintRandomNoOverlap useOverlapPred=0 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=128 gpu=1 th train_random.lua
# or use fineSize=64 to train to generate 64x64 sized image (results are better):
DATA_ROOT=dataset/train display_id=11 name=inpaintRandomNoOverlap useOverlapPred=0 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=64 gpu=1 th train_random.lua
  1. Test the model
# For training center region inpainting model, run:
DATA_ROOT=dataset/val net=checkpoints/inpaintCenter_500_net_G.t7 name=test_patch overlapPred=4 manualSeed=222 batchSize=30 loadSize=350 gpu=1 th test.lua
DATA_ROOT=dataset/val net=checkpoints/inpaintCenter_500_net_G.t7 name=test_full overlapPred=4 manualSeed=222 batchSize=30 loadSize=129 gpu=1 th test.lua

# For testing random region inpainting model, run (with fineSize=64 or 124, same as training):
DATA_ROOT=dataset/val net=checkpoints/inpaintRandomNoOverlap_500_net_G.t7 name=test_patch_random useOverlapPred=0 manualSeed=222 batchSize=30 loadSize=350 gpu=1 th test_random.lua
DATA_ROOT=dataset/val net=checkpoints/inpaintRandomNoOverlap_500_net_G.t7 name=test_full_random useOverlapPred=0 manualSeed=222 batchSize=30 loadSize=129 gpu=1 th test_random.lua

3) Download Features Caffemodel

Features for context encoder trained with reconstruction loss.

4) TensorFlow Implementation

Checkout the TensorFlow implementation of our paper by Taeksoo here. However, it does not implement full functionalities of our paper.

5) Project Website

Click here.

6) Paris Street-View Dataset

Please email me if you need the dataset and I will share a private link with you. I can't post the public link to this dataset due to the policy restrictions from Google Street View.

Owner
Deepak Pathak
Assistant Professor, CMU; (PhD @ UC Berkeley and BTech CS @ IIT Kanpur)
Deepak Pathak
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022