Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Overview

Deep-Unsupervised-Domain-Adaptation


Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Paper: Evaluation of Deep Neural Network Domain Adaptation Techniques for Image Recognition

Abstract

It has been well proved that deep networks are efficient at extracting features from a given (source) labeled dataset. However, it is not always the case that they can generalize well to other (target) datasets which very often have a different underlying distribution. In this report, we evaluate four different domain adaptation techniques for image classification tasks: Deep CORAL, Deep Domain Confusion (DDC), Conditional Adversarial Domain Adaptation (CDAN) and CDAN with Entropy Conditioning (CDAN+E). The selected domain adaptation techniques are unsupervised techniques where the target dataset will not carry any labels during training phase. The experiments are conducted on the office-31 dataset.

Results

Accuracy performance on the Office31 dataset for the source and domain data distributions (with and without transfer losses).

Deep CORAL DDC
CDAN CDAN+E

Target accuracies for all six domain shifts in Office31 dataset (amazon, webcam and dslr)

Method A → W A → D W → A W → D D → A D → W
No Adaptaion 43.1 ± 2.5 49.2 ± 3.7 35.6 ± 0.6 94.2 ± 3.1 35.4 ± 0.7 90.9 ± 2.4
DeepCORAL 49.5 ± 2.7 40.0 ± 3.3 38.3 ± 0.4 74.4 ± 4.3 38.5 ± 1.5 89.1 ± 4.4
DDC 41.7 ± 9.1 --- --- --- --- ---
CDAN 44.9 ± 3.3 49.5 ± 4.6 34.8 ± 2.4 93.3 ± 3.4 32.9 ± 3.4 88.3 ± 3.8
CDAN+E 48.7 ± 7.5 53.7 ± 4.7 35.3 ± 2.7 93.6 ± 3.4 33.9 ± 2.2 87.7 ± 4.0

Training and inference

To train the model in your computer you must download the Office31 dataset and put it in your data folder.

Execute training of a method by going to its folder (e.g. DeepCORAL):

cd DeepCORAL/
python main.py --epochs 100 --batch_size_source 128 --batch_size_target 128 --name_source amazon --name_target webcam

Loss and accuracy plots

Once the model is trained, you can generate plots like the ones shown above by running:

cd DeepCORAL/
python plot_loss_acc.py --source amazon --target webcam --no_epochs 10

The following is a list of the arguments the usuer can provide:

  • --epochs number of training epochs
  • --batch_size_source batch size of source data
  • --batch_size_target batch size of target data
  • --name_source name of source dataset
  • --name_target name of source dataset
  • --num_classes no. classes in dataset
  • --load_model flag to load pretrained model (AlexNet by default)
  • --adapt_domain bool argument to train with or without specific transfer loss

Requirements

  • tqdm
  • PyTorch
  • matplotlib
  • numpy
  • pickle
  • scikit-image
  • torchvision

References

Owner
Alan Grijalva
M. Sc. Student in Autonomous Systems, B. Sc. Physics.
Alan Grijalva
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022