FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

Overview

LST-TTS

Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audio samples/demo for our system can be accessed here

Setting up submodules

git submodule update --init --recursive

Get the waveglow vocoder checkpoint from here (This is from the NVIDIA official WaveGlow repo).

Setup environment

See docker/Dockerfile for the packages need to be installed.

Dataset preprocessing

LJSpeech

python preprocess_LJSpeech.py --datadir LJSpeechDir --outputdir OutputDir

VCTK

Get the leading and trailing scilence marks from this repo, and put vctk-silences.0.92.txt in your VCTK dataset directory.

python preprocess_VCTK.py --datadir VCTKDir --outputdir Output_Train_Dir
python preprocess_VCTK.py --datadir VCTKDir --outputdir Output_Test_Dir --make_test_set
  • --make_test_set: specify this flag to process the speakers in the test set, otherwise only process training speakers.

Training

LJSpeech

python train_TTS.py --precision 16 \
                    --datadir FeatureDir \
                    --vocoder_ckpt_path WaveGlowCKPT_PATH \
                    --sampledir SampleDir \
                    --batch_size 128 \
                    --check_val_every_n_epoch 50 \
                    --use_guided_attn \
                    --training_step 250000 \
                    --n_guided_steps 250000 \
                    --saving_path Output_CKPT_DIR \
                    --datatype LJSpeech \
                    [--distributed]
  • --distributed: enable DDP multi-GPU training
  • --batch_size: batch size per GPU, scale down if you train with multi-GPU and want to keep the same batch size
  • --check_val_every_n_epoch: sample and validate every n epoch
  • --datadir: output directory of the preprocess scripts

VCTK

python train_TTS.py --precision 16 \
                    --datadir FeatureDir \
                    --vocoder_ckpt_path WaveGlowCKPT_PATH \
                    --sampledir SampleDir \
                    --batch_size 64 \
                    --check_val_every_n_epoch 50 \
                    --use_guided_attn \
                    --training_step 150000 \
                    --n_guided_steps 150000 \
                    --etts_checkpoint LJSpeech_Model_CKPT \
                    --saving_path Output_CKPT_DIR \
                    --datatype VCTK \
                    [--distributed]
  • --etts_checkpoint: the checkpoint path of pretrained model (on LJ Speech)

Synthesis

We provide examples for synthesis of the system in synthesis.py, you can adjust this script to your own usage. Example to run synthesis.py:

python synthesis.py --etts_checkpoint VCTK_Model_CKPT \
                    --sampledir SampleDir \
                    --datatype VCTK \
                    --vocoder_ckpt_path WaveGlowCKPT_PATH
Owner
Li-Wei Chen
Li-Wei Chen
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022