Current state of supervised and unsupervised depth completion methods

Overview

Awesome Depth Completion

Table of Contents

About Sparse-to-Dense Depth Completion

In the sparse-to-dense depth completion problem, one wants to infer the dense depth map of a 3-D scene given an RGB image and its corresponding sparse reconstruction in the form of a sparse depth map obtained either from computational methods such as SfM (Strcuture-from-Motion) or active sensors such as lidar or structured light sensors.

Example 1: VOID dataset (indoor VIO)

Input RGB image Sparse point cloud Output point cloud from KBNet

Example 2: KITTI dataset (outdoor lidar)

Input RGB image Output point cloud from ScaffNet

Current State of Depth Completion Methods

Here we compile both unsupervised/self-supervised (monocular and stereo) and supervised methods published in recent conferences and journals on the VOID (Wong et. al., 2020) and KITTI (Uhrig et. al., 2017) depth completion benchmarks. Our ranking considers all four metrics rather than just RMSE.

Quick Links

Unsupervised VOID Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Unsupervised Depth Completion with Calibrated Backprojection Layers ICCV 2021 PyTorch 39.80 95.86 21.16 49.72
Learning Topology from Synthetic Data for Unsupervised Depth Completion RA-L & ICRA 2021 Tensorflow 60.68 122.01 35.24 67.34
Unsupervised Depth Completion from Visual Inertial Odometry RA-L & ICRA 2020 Tensorflow 85.05 169.79 48.92 104.02
Dense depth posterior (ddp) from single image and sparse range CVPR 2019 Tensorflow 151.86 222.36 74.59 112.36
Self-supervised Sparse-to-Dense: Self- supervised Depth Completion from LiDAR and Monocular Camera ICRA 2019 PyTorch 178.85 243.84 80.12 107.69

Supervised VOID Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Scanline Resolution-Invariant Depth Completion Using a Single Image and Sparse LiDAR Point Cloud RA-L & IROS 2021 N/A 59.40 181.42 19.37 46.56

Unsupervised KITTI Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Unsupervised Depth Completion with Calibrated Backprojection Layers ICCV 2021 PyTorch 256.76 1069.47 1.02 2.95
Learning Topology from Synthetic Data for Unsupervised Depth Completion RA-L & ICRA 2021 Tensorflow 280.76 1121.93 1.15 3.30
Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data ACCV 2020 PyTorch 280.42 1095.26 1.19 3.53
Unsupervised Depth Completion from Visual Inertial Odometry RA-L & ICRA 2020 Tensorflow 299.41 1169.97 1.20 3.56
A Surface Geometry Model for LiDAR Depth Completion RA-L & ICRA 2021 Tensorflow 298.3 1239.84 1.21 3.76
Dense depth posterior (ddp) from single image and sparse range CVPR 2019 Tensorflow 343.46 1263.19 1.32 3.58
DFuseNet: Deep Fusion of RGB and Sparse Depth Information for Image Guided Dense Depth Completion ITSC 2019 PyTorch 429.93 1206.66 1.79 3.62
In Defense of Classical Image Processing: Fast Depth Completion on the CPU CRV 2018 Python 302.60 1288.46 1.29 3.78
Self-supervised Sparse-to-Dense: Self- supervised Depth Completion from LiDAR and Monocular Camera ICRA 2019 PyTorch 350.32 1299.85 1.57 4.07
Semantically Guided Depth Upsampling GCPR 2016 N/A 605.47 2312.57 2.05 7.38

Supervised KITTI Depth Completion Benchmark

Paper Publication Code MAE RMSE iMAE iRMSE
Non-Local Spatial Propagation Network for Depth Completion ECCV 2020 PyTorch 199.5 741.68 0.84 1.99
CSPN++: Learning Context and Resource Aware Convolutional Spatial Propagation Networks for Depth Completion AAAI 2020 N/A 209.28 743.69 0.90 2.07
Dense depth posterior (ddp) from single image and sparse range CVPR 2019 Tensorflow 203.96 832.94 0.85 2.10
Adaptive context-aware multi-modal network for depth completion TIP 2021 PyTorch 206.80 732.99 0.90 2.08
PENet: Towards Precise and Efficient Image Guided Depth Completion ICRA 2021 PyTorch 210.55 730.08 0.94 2.17
FCFR-Net: Feature Fusion based Coarse- to-Fine Residual Learning for Depth Completion AAAI 2021 N/A 217.15 735.81 0.98 2.20
Learning Guided Convolutional Network for Depth Completion TIP 2020 PyTorch 218.83 736.24 0.99 2.25
DenseLiDAR: A Real-Time Pseudo Dense Depth Guided Depth Completion Network ICRA 2021 N/A 214.13 755.41 0.96 2.25
A Multi-Scale Guided Cascade Hourglass Network for Depth Completion WACV 2020 PyTorch 220.41 762.19 0.98 2.30
Sparse and noisy LiDAR completion with RGB guidance and uncertainty MVA 2019 PyTorch 215.02 772.87 0.93 2.19
A Multi-Scale Guided Cascade Hourglass Network for Depth Completion WACV 2020 N/A 220.41 762.19 0.98 2.30
Learning Joint 2D-3D Representations for Depth Completion ICCV 2019 N/A 221.19 752.88 1.14 2.34
DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene From Sparse LiDAR Data and Single Color Image CVPR 2019 PyTorch 226.50 758.38 1.15 2.56
Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints ICCV 2019 N/A 235.17 777.05 1.13 2.42
Scanline Resolution-Invariant Depth Completion Using a Single Image and Sparse LiDAR Point Cloud RA-L & IROS 2021 N/A 233.34 809.09 1.06 2.57
Confidence propagation through cnns for guided sparse depth regression PAMI 2019 PyTorch 233.26 829.98 1.03 2.60
Self-supervised Sparse-to-Dense: Self- supervised Depth Completion from LiDAR and Monocular Camera ICRA 2019 PyTorch 249.95 814.73 1.21 2.80
Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End CVPR 2020 PyTorch 251.77 960.05 1.05 3.37
Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation 3DV 2019 N/A 234.81 917.64 0.95 2.17
Depth coefficients for depth completion CVPR 2019 N/A 252.21 988.38 1.13 2.87
Depth estimation via affinity learned with convolutional spatial propagation network ECCV 2018 N/A 279.46 1019.64 1.15 2.93
Learning morphological operators for depth completion ACIVS 2019 N/A 310.49 1045.45 1.57 3.84
Sparsity Invariant CNNs 3DV 2017 Tensorflow 416.14 1419.75 1.29 3.25
Deep Convolutional Compressed Sensing for LiDAR Depth Completion ACCV 2018 Tensorflow 439.48 1325.37 3.19 59.39
Owner
I am a post-doctoral researcher at the UCLA Vision Lab under the supervision of Professor Stefano Soatto.
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
đź—ş General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Voila - VoilĂ  turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction VoilĂ  turns Jupyter notebooks into standalone web applications. Unlike the

VoilĂ  Dashboards 4.5k Jan 03, 2023
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Akshat Surolia 2 May 11, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022