Deep Reinforcement Learning for Keras.

Overview

Deep Reinforcement Learning for Keras

Build Status Documentation License Join the chat at https://gitter.im/keras-rl/Lobby

What is it?

keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras.

Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy.

Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. Documentation is available online.

What is included?

As of today, the following algorithms have been implemented:

  • Deep Q Learning (DQN) [1], [2]
  • Double DQN [3]
  • Deep Deterministic Policy Gradient (DDPG) [4]
  • Continuous DQN (CDQN or NAF) [6]
  • Cross-Entropy Method (CEM) [7], [8]
  • Dueling network DQN (Dueling DQN) [9]
  • Deep SARSA [10]
  • Asynchronous Advantage Actor-Critic (A3C) [5]
  • Proximal Policy Optimization Algorithms (PPO) [11]

You can find more information on each agent in the doc.

Installation

  • Install Keras-RL from Pypi (recommended):
pip install keras-rl
  • Install from Github source:
git clone https://github.com/keras-rl/keras-rl.git
cd keras-rl
python setup.py install

Examples

If you want to run the examples, you'll also have to install:

For atari example you will also need:

  • Pillow: pip install Pillow
  • gym[atari]: Atari module for gym. Use pip install gym[atari]

Once you have installed everything, you can try out a simple example:

python examples/dqn_cartpole.py

This is a very simple example and it should converge relatively quickly, so it's a great way to get started! It also visualizes the game during training, so you can watch it learn. How cool is that?

Some sample weights are available on keras-rl-weights.

If you have questions or problems, please file an issue or, even better, fix the problem yourself and submit a pull request!

External Projects

You're using Keras-RL on a project? Open a PR and share it!

Visualizing Training Metrics

To see graphs of your training progress and compare across runs, run pip install wandb and add the WandbLogger callback to your agent's fit() call:

from rl.callbacks import WandbLogger

...

agent.fit(env, nb_steps=50000, callbacks=[WandbLogger()])

For more info and options, see the W&B docs.

Citing

If you use keras-rl in your research, you can cite it as follows:

@misc{plappert2016kerasrl,
    author = {Matthias Plappert},
    title = {keras-rl},
    year = {2016},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/keras-rl/keras-rl}},
}

References

  1. Playing Atari with Deep Reinforcement Learning, Mnih et al., 2013
  2. Human-level control through deep reinforcement learning, Mnih et al., 2015
  3. Deep Reinforcement Learning with Double Q-learning, van Hasselt et al., 2015
  4. Continuous control with deep reinforcement learning, Lillicrap et al., 2015
  5. Asynchronous Methods for Deep Reinforcement Learning, Mnih et al., 2016
  6. Continuous Deep Q-Learning with Model-based Acceleration, Gu et al., 2016
  7. Learning Tetris Using the Noisy Cross-Entropy Method, Szita et al., 2006
  8. Deep Reinforcement Learning (MLSS lecture notes), Schulman, 2016
  9. Dueling Network Architectures for Deep Reinforcement Learning, Wang et al., 2016
  10. Reinforcement learning: An introduction, Sutton and Barto, 2011
  11. Proximal Policy Optimization Algorithms, Schulman et al., 2017
You might also like...
Distributed Deep learning with Keras & Spark
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

A deep learning network built with TensorFlow and Keras to classify gender and estimate age.
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Releases(v0.4.2)
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022