Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Overview

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

This is the code repository for Advanced Deep Learning with TensoFlow 2 and Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

Please note that the code examples have been updated to support TensorFlow 2.0 Keras API only.

About the Book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.

Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.

Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.

Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

Related Products

Installation

It is recommended to run within conda enviroment. Pls download Anacoda from: Anaconda. To install anaconda:

sh

A machine with at least 1 NVIDIA GPU (1060 or better) is required. The code examples have been tested on 1060, 1080Ti, RTX 2080Ti, V100, RTX Quadro 8000 on Ubuntu 18.04 LTS. Below is a rough guide to install NVIDIA driver and CuDNN to enable GPU support.

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt update

sudo ubuntu-drivers autoinstall

sudo reboot

nvidia-smi

At the time of writing, nvidia-smishows the NVIDIA driver version is 440.64 and CUDA version is 10.2.

We are almost there. The last set of packages must be installed as follows. Some steps might require sudo access.

conda create --name packt

conda activate packt

cd

git clone https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

cd Advanced-Deep-Learning-with-Keras

pip install -r requirements.txt

sudo apt-get install python-pydot

sudo apt-get install ffmpeg

Test if a simple model can be trained without errors:

cd chapter1-keras-quick-tour

python3 mlp-mnist-1.3.2.py

The final output shows the accuracy of the trained model on MNIST test dataset is about 98.2%.

Alternative TensorFlow Installation

If you are having problems with CUDA libraries (ie tf could not load or find libcudart.so.10.X), TensorFlow and CUDA libraries can be installed together using conda:

pip uninstall tensorflow-gpu
conda install -c anaconda tensorflow-gpu

Advanced Deep Learning with TensorFlow 2 and Keras code examples used in the book.

Chapter 1 - Introduction

  1. MLP on MNIST
  2. CNN on MNIST
  3. RNN on MNIST

Chapter 2 - Deep Networks

  1. Functional API on MNIST
  2. Y-Network on MNIST
  3. ResNet v1 and v2 on CIFAR10
  4. DenseNet on CIFAR10

Chapter 3 - AutoEncoders

  1. Denoising AutoEncoders

Sample outputs for random digits:

Random Digits

  1. Colorization AutoEncoder

Sample outputs for random cifar10 images:

Colorized Images

Chapter 4 - Generative Adversarial Network (GAN)

  1. Deep Convolutional GAN (DCGAN)

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

Sample outputs for random digits:

Random Digits

  1. Conditional (GAN)

Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 5 - Improved GAN

  1. Wasserstein GAN (WGAN)

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein GAN." arXiv preprint arXiv:1701.07875 (2017).

Sample outputs for random digits:

Random Digits

  1. Least Squares GAN (LSGAN)

Mao, Xudong, et al. "Least squares generative adversarial networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random digits:

Random Digits

  1. Auxiliary Classfier GAN (ACGAN)

Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional image synthesis with auxiliary classifier GANs. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017."

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 6 - GAN with Disentangled Latent Representations

  1. Information Maximizing GAN (InfoGAN)

Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." Advances in Neural Information Processing Systems. 2016.

Sample outputs for digits 0 to 9:

Zero to Nine

  1. Stacked GAN

Huang, Xun, et al. "Stacked generative adversarial networks." IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. 2017

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 7 - Cross-Domain GAN

  1. CycleGAN

Zhu, Jun-Yan, et al. "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random cifar10 images:

Colorized Images

Sample outputs for MNIST to SVHN:

MNIST2SVHN

Chapter 8 - Variational Autoencoders (VAE)

  1. VAE MLP MNIST
  2. VAE CNN MNIST
  3. Conditional VAE and Beta VAE

Kingma, Diederik P., and Max Welling. "Auto-encoding Variational Bayes." arXiv preprint arXiv:1312.6114 (2013).

Sohn, Kihyuk, Honglak Lee, and Xinchen Yan. "Learning structured output representation using deep conditional generative models." Advances in Neural Information Processing Systems. 2015.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. β-VAE: Learning basic visual concepts with a constrained variational framework. ICLR, 2017.

Generated MNIST by navigating the latent space:

MNIST

Chapter 9 - Deep Reinforcement Learning

  1. Q-Learning
  2. Q-Learning on Frozen Lake Environment
  3. DQN and DDQN on Cartpole Environment

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529

DQN on Cartpole Environment:

Cartpole

Chapter 10 - Policy Gradient Methods

  1. REINFORCE, REINFORCE with Baseline, Actor-Critic, A2C

Sutton and Barto, Reinforcement Learning: An Introduction

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International conference on machine learning. 2016.

Policy Gradient on MountainCar Continuous Environment:

Car

Chapter 11 - Object Detection

  1. Single-Shot Detection

Single-Shot Detection on 3 Objects SSD

Chapter 12 - Semantic Segmentation

  1. FCN

  2. PSPNet

Semantic Segmentation

Semantic Segmentation

Chapter 13 - Unsupervised Learning using Mutual Information

  1. Invariant Information Clustering

  2. MINE: Mutual Information Estimation

MINE MINE

Citation

If you find this work useful, please cite:

@book{atienza2020advanced,
  title={Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more},
  author={Atienza, Rowel},
  year={2020},
  publisher={Packt Publishing Ltd}
}
Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022