Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

Related tags

Deep Learningsuo_slam
Overview

SUO-SLAM

This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv link.

Citation

If you use any part of this repository in an academic work, please cite our paper as:

@inproceedings{Merrill2022CVPR,
  Title      = {Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation},
  Author     = {Nathaniel Merrill and Yuliang Guo and Xingxing Zuo and Xinyu Huang and Stefan Leutenegger and Xi Peng and Liu Ren and Guoquan Huang},
  Booktitle  = {2022 Conference on Computer Vision and Pattern Recognition (CVPR)},
  Year       = {2022},
  Address    = {New Orleans, USA},
  Month      = jun,
}

Installation

Click for details... This codebase was tested on Ubuntu 18.04. To use the BOP rendering (i.e. for keypoint labeling) install
sudo apt install libfreetype6-dev libglfw3

You will also need a python environment that contains the required packages. To see what packages we used, check out the list of requirements in requirements.txt. They can be installed via pip install -r requirements.txt

Preparing Data

Click for details...

Datasets

To be able to run the training and testing (i.e. single view or with SLAM), first decide on a place to download the data to. The disk will need a few hundred GB of space for all the data (at least 150GB for download and more to extract). All of our code expects the data to be in a local directory ./data, but you can of course symlink this to another location (perhaps with more disk space). So, first of all, in the root of this repo run

$ mkdir data

or to symlink to an external location

$ ln -s /path/to/drive/with/space/ ./data

You can pick and choose what data you want to download (for example just T-LESS or YCBV). Note that all YCBV and TLESS downloads have our keypoint labels packaged along with the data. Download the following google drive links into ./data and extract them.

When all is said and done, the tree should look like this

$ cd ./data && tree --filelimit 3
.
├── bop_datasets
│   ├── tless 
│   └── ycbv 
├── saved_detections
└── VOCdevkit
    └── VOC2012

Pre-trained models

You can download the pretrained models anywhere, but I like to keep them in the results directory that is written to during training.

Training

Click for details...

First set the default arguments in ./lib/args.py for your username if desired, then execute

$ ./train.py

with the appropriate arguments for your filesystem. You can also run

$ ./train.py -h

for a full list of arguments and their meaning. Some important args are batch_size, which is the number of images loaded for each training batch. Note that there may be a variable number of objects in each image, and the objects are all stacked together into one big batch to run the network -- so the actual batch size being run might be multiple times batch_size. In order to keep batch_size reasonably large, we provide another arg called truncate_obj, which, as the help says, truncates the object batches to this number if it exceeds it. We recommend that you start with a large batch size so that you can find out the maximum truncate_obj for you GPUs, then reduce the batch size until there are little to no warnings about too many objects being truncated.

Evaluation

Click for details...

Before you can evaluate in a single-view or SLAM fashion, you will need to build the thirdparty libraries for PnP and graph optimization. First make sure that you have CERES solver installed. The run

$ ./build_thirdparty.sh

Reproducing Results

To reproduce the results of the paper with the pretrained models, check out the scripts under the scripts directory:

eval_all_tless.sh  eval_all_ycbv.sh  make_video.sh

These will reproduce most of the results in the paper as well as any video clips you want. You may have to change the first few lines of each script. Note that these examples can also show you the proper arguments if you want to run from command line alone.

Note that for the T-LESS dataset, we use the thirdparty BOP toolkit to get the VSD error recall, which will show up in the final terminal output as "Mean object recall" among other numbers.

Labeling

Click for details...

Overview

We manually label keypoints on the CAD model to enable some keypoints with semantic meaning. For the full list of keypoint meanings, see the specific README

We provide our landmark labeling tool. Check out the script manual_keypoints.py. This same script can be used to make a visualization of the keypoints as shown below with the --viz option.

The script will show a panel of the same object but oriented slightly differently. The idea is that you pick the same keypoint multiple times to ensure correctness and to get a better label by averaging multiple samples.

The script will also print the following directions to follow in the terminal.

============= Welcome ===============
Select the keypoints with a left click!
Use the "wasd" to turn the objects.
Press "i" to zoom in and "o" to zoom out.
Make sure that the keypoint colors match between all views.
Messed up? Just press 'u' to undo.
Press "Enter" to finish and save the keypoints
Press "Esc" to just quit

Once you have pressed "enter", you will get to an inspection pane.

Where the unscaled mean keypoints are on the left, and the ones scaled by covariance is on the left, where the ellipses are the Gaussian 3-sigma projected onto the image. If the covariance is too large, or the mean is out of place, then you may have messed up. Again, the program will print out these directions to terminal:

Inspect the results!
Use the "wasd" to turn the object.
Press "i" to zoom in and "o" to zoom out.
Press "Esc" to go back, "Enter" to accept (saving keypoints and viewpoint for vizualization).
Please pick a point on the object!

So if you are done, and the result looks good, then press "Enter", if not then "Esc" to go back. Make sure also that when you are done, you rotate and scale the object into the best "view pose" (with the front facing the camera, and top facing up), as this pose is used by both the above vizualization and the actual training code for determining the best symmetry to pick for an initial detection.

Labeling Tips

Even though there are 8 panels, you don't need to fill out all 8. Each keypoint just needs at least 3 samples to sample the covariance.

We recommend that you label the same keypoint (say keypoint i) on all the object renderings first, then go to the inspection panel at the end of this each time so that you can easily undo a mistake for keypoint i with the "u" key and not lose any work. Otherwise, if you label each object rendering completely, then you may have to undo a lot of labelings that were not mistakes.

Also, if there is an object that you want to label a void in the CAD model, like the top center of the bowl, then you can use the multiple samples to your advantage, and choose samples that will average to the desired result, since the labels are required to land on the actual CAD model in the labeling tool.

<\details>

Owner
Robot Perception & Navigation Group (RPNG)
Research on robot sensing, estimation, localization, mapping, perception, and planning
Robot Perception & Navigation Group (RPNG)
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022