LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

Overview

LWCC: A LightWeight Crowd Counting library for Python

LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models all based on convolutional neural networks: CSRNet, Bayesian crowd counting, DM-Count, and SFANet. The library is based on PyTorch.

Installation

The easiest way to install library LWCC and its prerequisites is to use the package manager pip.

pip install lwcc

Usage

You can import the library and use its functionalities by:

from lwcc import LWCC

Count estimation

Most straightforward way to use the library:

img = "path/to/image"
count = LWCC.get_count(img)

This uses CSRNet pretrained on SHA (default). You can choose a different model pretrained on different data set using:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB")

The result is a float with predicted count.

Large images

Note: By default all images are resized such that the longest side is less than 1000px, preserving the aspect ratio. Otherwise models might perform worse for large images with sparse crowds (counting patterns on shirts, dresses). If you are estimating dense crowds, we recommend you to set the resize_img to False. The call should look like this:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB", resize_img = True)

Multiple images

Library allows prediction of count for multiple images with a single call of get_count. You can simply pass a list of image paths:

img1 = "path/to/image1"
img2 = "path/to/image2"
count = LWCC.get_count([img1, img2])

Result is then a dictionary of pairs image_name : image_count: result

Density map

You can also request a density map by setting flag return_density = True. The result is then a tuple (count, density_map), where density_map is a 2d array with predicted densities. The array is smaller than the input image and its size depends on the model.

import matplotlib.pyplot as plt

count, density = LWCC.get_count(img, return_density = True)

plt.imshow(density)
plt.show()

result_density

This also works for multiple images (list of image paths as input). Result is then a tuple of two dictionaries, where the first dictionary is the same as above (pairs of image_name : image_count) and the second dictionary contains pairs of image_name : density_map.

Loading the model

You can also directly access the PyTorch models by loading them first with the load_model method.

model = LWCC.load_model(model_name = "DM-Count", model_weights = "SHA")

The loaded model is a PyTorch model and you can access its weights as with any other PyTorch model.

You can use it for inference as:

 count = LWCC.get_count(img, model = model)

Models

LWCC currently offers 4 models (CSRNet, Bayesian crowd counting, DM-Count, SFANet) pretrained on Shanghai A, Shanghai B, and UCF-QNRF datasets. The following table shows the model name and MAE / MSE result of the available pretrained models on the test sets.

Model name SHA SHB QNRF
CSRNet 75.44 / 113.55 11.27 / 19.32 Not available
Bay 66.92 / 112.07 8.27 / 13.56 90.43 / 161.41
DM-Count 61.39 / 98.56 7.68 / 12.66 88.97 / 154.11
SFANet Not available 7.05 / 12.18 Not available

Valid options for model_name are written in the first column and thus include: CSRNet, Bay, DM-Count, and SFANet. Valid options for model_weights are written in the first row and thus include: SHA, SHB, and QNRF.

Note: Not all model_weights are supported with all model_names. See the above table for possible combinations.

How does it work?

The goal of crowd counting methods is to determine the number of people present in a particular area. There exist many approaches (detection, regression, density-based approaches), however, since 2015 many convolutional neural network (CNN) based approaches have been proposed. The basic idea behind CNN based approaches is that they normally try to predict the density map from the input image and infer the count from it. These models differ in the use of different backbones, loss functions, additional maps, etc. If you are interested in a particular algorithm, you are welcome to read the paper belonging to the specific model.

FAQ - Frequently asked questions

Can I see some more examples of LWCC in action?

Yes, you can find some examples in Examples.ipynb!

How accurate are the models?

You can see the mean absolute error (MAE) and mean squared error (MSE) of the pretrained models on test sets in section models. We recommend models pretrained on SHA or QNRF for dense crowds, and SHB for sparse crowds.

Is GPU support available?

No, GPU support is currently not supported yet, but is planned for the future version.

Can I load custom weights?

Full support of loading custom pretrained weights is not supported, but is planned in the future version.

Can I train the models myself?

The library does not support training, only inference.

Why are my results bad?

This might depend on the model you use, image size, density or type of the crowd, or the weights that you use. For example, models might often make mistakes for images with a group portrait, as they are trained on images containing crowds on streets, concerts, etc. Using SHAweights on relatively sparse crowds might also give very wrong results. On the other hand, SHB might perform better as the weights were trained on Shanghai B data set, which containts images with relatively sparse crowds. Using high quality images with sparse crowds might also yield bad results, as the algorithms might mistake some textures of clothings for a crowd.

As a rule of thumb, you should use SHB if you are planning on estimating the number of people in images with sparse crowds, and SHA or QNRF for images with dense crowds. Keep in mind that current algorithms predict the density, and there still might be some mistakes. You are welcome to try out different combinations of models and weights and see which one works the best for your problem.

Support

If you like the library please show us your support by ⭐️ starring the project!

If you wish to include your own crowd counting model, please contact us ([email protected] or [email protected]).

Stargazers

Stargazers repo roster for @tersekmatija/lwcc

Citation

This library is a result of a research of CNN Crowd Counting models by Matija Teršek and Maša Kljun. Although the paper has not been published yet, please provide the link to this GitHub repository if you use LWCC in your research.

License

This library is licensed under MIT license (see LICENSE). Licenses of the models wrapped in the library will be inherited, depending on the model you use ( CSRNet, Bayesian crowd counting, DM-Count, and SFANet).

Owner
Matija Teršek
Data Science Master's student
Matija Teršek
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
Atif Hassan 103 Dec 14, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022