PyImpetus is a Markov Blanket based feature subset selection algorithm that considers features both separately and together as a group in order to provide not just the best set of features but also the best combination of features

Overview

forthebadge made-with-python ForTheBadge built-with-love

PyPI version shields.io Downloads Maintenance

PyImpetus

PyImpetus is a Markov Blanket based feature selection algorithm that selects a subset of features by considering their performance both individually as well as a group. This allows the algorithm to not only select the best set of features, but also select the best set of features that play well with each other. For example, the best performing feature might not play well with others while the remaining features, when taken together could out-perform the best feature. PyImpetus takes this into account and produces the best possible combination. Thus, the algorithm provides a minimal feature subset. So, you do not have to decide on how many features to take. PyImpetus selects the optimal set for you.

PyImpetus has been completely revamped and now supports binary classification, multi-class classification and regression tasks. It has been tested on 14 datasets and outperformed state-of-the-art Markov Blanket learning algorithms on all of them along with traditional feature selection algorithms such as Forward Feature Selection, Backward Feature Elimination and Recursive Feature Elimination.

How to install?

pip install PyImpetus

Functions and parameters

# The initialization of PyImpetus takes in multiple parameters as input
# PPIMBC is for classification
model = PPIMBC(model, p_val_thresh, num_simul, simul_size, simul_type, sig_test_type, cv, verbose, random_state, n_jobs)
  • model - estimator object, default=DecisionTreeClassifier() The model which is used to perform classification in order to find feature importance via significance-test.
  • p_val_thresh - float, default=0.05 The p-value (in this case, feature importance) below which a feature will be considered as a candidate for the final MB.
  • num_simul - int, default=30 (This feature has huge impact on speed) Number of train-test splits to perform to check usefulness of each feature. For large datasets, the value should be considerably reduced though do not go below 5.
  • simul_size - float, default=0.2 The size of the test set in each train-test split
  • simul_type - boolean, default=0 To apply stratification or not
    • 0 means train-test splits are not stratified.
    • 1 means the train-test splits will be stratified.
  • sig_test_type - string, default="non-parametric" This determines the type of significance test to use.
    • "parametric" means a parametric significance test will be used (Note: This test selects very few features)
    • "non-parametric" means a non-parametric significance test will be used
  • cv - cv object/int, default=0 Determines the number of splits for cross-validation. Sklearn CV object can also be passed. A value of 0 means CV is disabled.
  • verbose - int, default=2 Controls the verbosity: the higher, more the messages.
  • random_state - int or RandomState instance, default=None Pass an int for reproducible output across multiple function calls.
  • n_jobs - int, default=-1 The number of CPUs to use to do the computation.
    • None means 1 unless in a :obj:joblib.parallel_backend context.
    • -1 means using all processors.
# The initialization of PyImpetus takes in multiple parameters as input
# PPIMBR is for regression
model = PPIMBR(model, p_val_thresh, num_simul, simul_size, sig_test_type, cv, verbose, random_state, n_jobs)
  • model - estimator object, default=DecisionTreeRegressor() The model which is used to perform regression in order to find feature importance via significance-test.
  • p_val_thresh - float, default=0.05 The p-value (in this case, feature importance) below which a feature will be considered as a candidate for the final MB.
  • num_simul - int, default=30 (This feature has huge impact on speed) Number of train-test splits to perform to check usefulness of each feature. For large datasets, the value should be considerably reduced though do not go below 5.
  • simul_size - float, default=0.2 The size of the test set in each train-test split
  • sig_test_type - string, default="non-parametric" This determines the type of significance test to use.
    • "parametric" means a parametric significance test will be used (Note: This test selects very few features)
    • "non-parametric" means a non-parametric significance test will be used
  • cv - cv object/int, default=0 Determines the number of splits for cross-validation. Sklearn CV object can also be passed. A value of 0 means CV is disabled.
  • verbose - int, default=2 Controls the verbosity: the higher, more the messages.
  • random_state - int or RandomState instance, default=None Pass an int for reproducible output across multiple function calls.
  • n_jobs - int, default=-1 The number of CPUs to use to do the computation.
    • None means 1 unless in a :obj:joblib.parallel_backend context.
    • -1 means using all processors.
# To fit PyImpetus on provided dataset and find recommended features
fit(data, target)
  • data - A pandas dataframe upon which feature selection is to be applied
  • target - A numpy array, denoting the target variable
# This function returns the names of the columns that form the MB (These are the recommended features)
transform(data)
  • data - A pandas dataframe which needs to be pruned
# To fit PyImpetus on provided dataset and return pruned data
fit_transform(data, target)
  • data - A pandas dataframe upon which feature selection is to be applied
  • target - A numpy array, denoting the target variable
# To plot XGBoost style feature importance
feature_importance()

How to import?

from PyImpetus import PPIMBC, PPIMBR

Usage

# Import the algorithm. PPIMBC is for classification and PPIMBR is for regression
from PyImeptus import PPIMBC, PPIMBR
# Initialize the PyImpetus object
model = PPIMBC(model=SVC(random_state=27, class_weight="balanced"), p_val_thresh=0.05, num_simul=30, simul_size=0.2, simul_type=0, sig_test_type="non-parametric", cv=5, random_state=27, n_jobs=-1, verbose=2)
# The fit_transform function is a wrapper for the fit and transform functions, individually.
# The fit function finds the MB for given data while transform function provides the pruned form of the dataset
df_train = model.fit_transform(df_train.drop("Response", axis=1), df_train["Response"].values)
df_test = model.transform(df_test)
# Check out the MB
print(model.MB)
# Check out the feature importance scores for the selected feature subset
print(model.feat_imp_scores)
# Get a plot of the feature importance scores
model.feature_importance()

For better accuracy

Note: Play with the values of num_simul, simul_size, simul_type and p_val_thresh because sometimes a specific combination of these values will end up giving best results

  • Increase the cv value In all experiments, cv did not help in getting better accuracy. Use this only when you have extremely small dataset
  • Increase the num_simul value
  • Try one of these values for simul_size = {0.1, 0.2, 0.3, 0.4}
  • Use non-linear models for feature selection. Apply hyper-parameter tuning on models
  • Increase value of p_val_thresh in order to increase the number of features to include in thre Markov Blanket

For better speeds

  • Decrease the cv value. For large datasets cv might not be required. Therefore, set cv=0 to disable the aggregation step. This will result in less robust feature subset selection but at much faster speeds
  • Decrease the num_simul value but don't decrease it below 5
  • Set n_jobs to -1
  • Use linear models

For selection of less features

  • Try reducing the p_val_thresh value
  • Try out sig_test_type = "parametric"

Performance in terms of Accuracy (classification) and MSE (regression)

Dataset # of samples # of features Task Type Score using all features Score using featurewiz Score using PyImpetus # of features selected % of features selected Tutorial
Ionosphere 351 34 Classification 88.01% 92.86% 14 42.42% tutorial here
Arcene 100 10000 Classification 82% 84.72% 304 3.04%
AlonDS2000 62 2000 Classification 80.55% 86.98% 88.49% 75 3.75%
slice_localization_data 53500 384 Regression 6.54 5.69 259 67.45% tutorial here

Note: Here, for the first, second and third tasks, a higher accuracy score is better while for the fourth task, a lower MSE (Mean Squared Error) is better.

Performance in terms of Time (in seconds)

Dataset # of samples # of features Time (with PyImpetus)
Ionosphere 351 34 35.37
Arcene 100 10000 1570
AlonDS2000 62 2000 125.511
slice_localization_data 53500 384 1296.13

Future Ideas

  • Let me know

Feature Request

Drop me an email at [email protected] if you want any particular feature

Please cite this work as

Reference to the upcoming paper will be added here

Owner
Atif Hassan
PhD student at the Center of Excellence for AI, IIT Kharagpur.
Atif Hassan
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022