An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Related tags

Deep LearningUformer
Overview

Uformer: A General U-Shaped Transformer for Image Restoration

Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu

PWC PWC

Paper: https://arxiv.org/abs/2106.03106

Update:

  • 2021.08.19 Release a pre-trained model(Uformer32)! Add a script for FLOP/GMAC calculation.
  • 2021.07.29 Add a script for testing the pre-trained model on the arbitrary-resolution images.

In this paper, we present Uformer, an effective and efficient Transformer-based architecture, in which we build a hierarchical encoder-decoder network using the Transformer block for image restoration. Uformer has two core designs to make it suitable for this task. The first key element is a local-enhanced window Transformer block, where we use non-overlapping window-based self-attention to reduce the computational requirement and employ the depth-wise convolution in the feed-forward network to further improve its potential for capturing local context. The second key element is that we explore three skip-connection schemes to effectively deliver information from the encoder to the decoder. Powered by these two designs, Uformer enjoys a high capability for capturing useful dependencies for image restoration. Extensive experiments on several image restoration tasks demonstrate the superiority of Uformer, including image denoising, deraining, deblurring and demoireing. We expect that our work will encourage further research to explore Transformer-based architectures for low-level vision tasks.

Uformer

Details

Package dependencies

The project is built with PyTorch 1.7.1, Python3.7, CUDA10.1. For package dependencies, you can install them by:

pip3 install -r requirements.txt

Pretrained model

Data preparation

Denoising

For training data of SIDD, you can download the SIDD-Medium dataset from the official url. Then generate training patches for training by:

python3 generate_patches_SIDD.py --src_dir ../SIDD_Medium_Srgb/Data --tar_dir ../datasets/denoising/sidd/train

For evaluation, we use the same evaluation data as here, and put it into the dir ../datasets/denoising/sidd/val.

Training

Denoising

To train Uformer32(embed_dim=32) on SIDD, we use 2 V100 GPUs and run for 250 epochs:

python3 ./train.py --arch Uformer --batch_size 32 --gpu '0,1' \
    --train_ps 128 --train_dir ../datasets/denoising/sidd/train --env 32_0705_1 \
    --val_dir ../datasets/denoising/sidd/val --embed_dim 32 --warmup

More configuration can be founded in train.sh.

Evaluation

Denoising

To evaluate Uformer32 on SIDD, you can run:

python3 ./test.py --arch Uformer --batch_size 1 --gpu '0' \
    --input_dir ../datasets/denoising/sidd/val --result_dir YOUR_RESULT_DIR \
    --weights YOUR_PRETRAINED_MODEL_PATH --embed_dim 32 

Computational Cost

We provide a simple script to calculate the flops by ourselves, a simple script has been added in model.py. You can change the configuration and run it via:

python3 model.py

The manual calculation of GMacs in this repo differs slightly from the main paper, but they do not influence the conclusion. We will correct the paper later.

Citation

If you find this project useful in your research, please consider citing:

@article{wang2021uformer,
	title={Uformer: A General U-Shaped Transformer for Image Restoration},
	author={Wang, Zhendong and Cun, Xiaodong and Bao, Jianmin and Liu, Jianzhuang},
	journal={arXiv preprint 2106.03106},
	year={2021}
}

Acknowledgement

This code borrows heavily from MIRNet and SwinTransformer.

Contact

Please contact us if there is any question or suggestion(Zhendong Wang [email protected], Xiaodong Cun [email protected]).

Owner
Zhendong Wang
Deep learning, Computer Vision, Low-level Vision, Image Generation.
Zhendong Wang
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022