An Implementation of SiameseRPN with Feature Pyramid Networks

Overview

SiameseRPN with FPN

This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the original AlexNet structures.

For more details about siameseRPN please refer to the paper : High Performance Visual Tracking with Siamese Region Proposal Network by Bo Li, Junjie Yan,Wei Wu, Zheng Zhu, Xiaolin Hu.

For more details about Feature Pyramid Network please refer to the paper: Feature Pyramid Network for Object Detection by Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.

Networks

  • Siamese Region Proposal Networks

    image-20210909160951628

  • Feature Pyramid Networks

    image-20210909161336484

  • SimaeseRPN+FPN

    • Template Branch

      0001

    • Detection Branch

      0001

Results

This project can get 0.618 AUC on OTB100, which also achieves overall 1.3% progress than the performance of baseline Siamese-RPN. Additionally, based on the ablation study results, it also shows that it can achieve robust performance different operating systems and GPUs.

Data preparation

I only use pre-trained models to finish my experiments,so here I would post the testing dataset OTB100 I get from http://cvlab.hanyang.ac.kr/tracker_benchmark/

If you don't want to download through the website above, you can just download: https://pan.baidu.com/s/1vWIn8ovCGKmlgIdHdt_MkA key: p8u4

For more details about OTB100 please refer to the paper: Object Tracking Benchmark by Yi Wu, Jongwoo Lim, Ming-Hsuan Yang.

Train phase

I didn't do any training but I still keep the baseline training method in my project. So if you have VID dataset or youtube-bb dataset, I would just post the steps of training here

Create dataset:

python bin/create_dataset_ytbid.py --vid-dir /PATH/TO/ILSVRC2015 --ytb-dir /PATH/TO/YT-BB --output-dir /PATH/TO/SAVE_DATA --num_threads 6

Create lmdb:

python bin/create_lmdb.py --data-dir /PATH/TO/SAVE_DATA --output-dir /PATH/TO/RESULT.lmdb --num_threads 12

Train:

python bin/train_siamrpn.py --data_dir /PATH/TO/SAVE_DATA

Test phase

If want to test the tracker, please first change the project path:

sys.path.append('[your_project_path]')

And then choose the combinations of different layers I putted in the net/network.py

then input your model path and dataset path to run:

python bin/test_OTB.py -ms [your_model_path] -v tb100 -d [your_dataset_path]

Environment

I've exported my anaconda and pip environment into /env/conda_env.yaml and /env/pip_requirements.txt

if you want to use it, just run the command below accordingly

for anaconda:

conda create -n [your_env_name] -f conda_env.yaml

for pip:

pip install -r requirements.txt

Model Download

Model which the baseline uses: https://pan.baidu.com/s/1vSvTqxaFwgmZdS00U3YIzQ keyword: v91k

Model after training 50 epoch: https://pan.baidu.com/s/1m9ISra0B04jcmjW1n73fxg keyword: 0s03

Experimental Environment

(1)

DELL-Precision-7530

OS: Ubuntu 18.04 LTS CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Quadro P1000

(2)

HP OMEN

OS: Windows 10 Home Edition

CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.6GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Geforce RTX2060

Optimization

On Ubuntu and Quadro P1000

  • AUCs with model siamrpn_38.pth
Layers Results(AUC)
baseline 0.610
2+5 0.618
2+3+5 0.607
2+3+4+5 0.611
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.600
2+5 0.605
2+3+5 0.594
2+3+4+5 0.605

On Windows 10 and Nvidia Geforce RTX2060

  • AUCs with model siamrpn_38.pth
layers Results(AUC)
baseline 0.610
2+5 0.617
2+3+5 0.607
2+3+4+5 0.612
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.597
2+5 0.606
2+3+5 0.597
2+3+4+5 0.605

Reference

[1] B. Li, J. Yan, W. Wu, Z. Zhu, X. Hu, High Performance Visual Tracking with Siamese Region Proposal Network, inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pages 8971-8980.

[2] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pages 2117-2125.

[3] Y. Wu, J. Lim, M. Yang, "Object Tracking Benchmark", in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, pages 1834-1848.

DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022