Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

Overview

PWC

PWC

PWC

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image"

Introduction

This repo is official PyTorch implementation of Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image (ICCV 2019). It contains PoseNet part.

What this repo provides:

Dependencies

This code is tested under Ubuntu 16.04, CUDA 9.0, cuDNN 7.1 environment with two NVIDIA 1080Ti GPUs.

Python 3.6.5 version with Anaconda 3 is used for development.

Quick demo

You can try quick demo at demo folder.

  • Download the pre-trained PoseNet in here.
  • Prepare input.jpg and pre-trained snapshot at demo folder.
  • Set bbox_list at here.
  • Set root_depth_list at here.
  • Run python demo.py --gpu 0 --test_epoch 24 if you want to run on gpu 0.
  • You can see output_pose_2d.jpg and new window that shows 3D pose.

Directory

Root

The ${POSE_ROOT} is described as below.

${POSE_ROOT}
|-- data
|-- demo
|-- common
|-- main
|-- tool
|-- vis
`-- output
  • data contains data loading codes and soft links to images and annotations directories.
  • demo contains demo codes.
  • common contains kernel codes for 3d multi-person pose estimation system.
  • main contains high-level codes for training or testing the network.
  • tool contains data pre-processing codes. You don't have to run this code. I provide pre-processed data below.
  • vis contains scripts for 3d visualization.
  • output contains log, trained models, visualized outputs, and test result.

Data

You need to follow directory structure of the data as below.

${POSE_ROOT}
|-- data
|   |-- Human36M
|   |   |-- bbox_root
|   |   |   |-- bbox_root_human36m_output.json
|   |   |-- images
|   |   |-- annotations
|   |-- MPII
|   |   |-- images
|   |   |-- annotations
|   |-- MSCOCO
|   |   |-- bbox_root
|   |   |   |-- bbox_root_coco_output.json
|   |   |-- images
|   |   |   |-- train2017
|   |   |   |-- val2017
|   |   |-- annotations
|   |-- MuCo
|   |   |-- data
|   |   |   |-- augmented_set
|   |   |   |-- unaugmented_set
|   |   |   |-- MuCo-3DHP.json
|   |-- MuPoTS
|   |   |-- bbox_root
|   |   |   |-- bbox_mupots_output.json
|   |   |-- data
|   |   |   |-- MultiPersonTestSet
|   |   |   |-- MuPoTS-3D.json

To download multiple files from Google drive without compressing them, try this. If you have a problem with 'Download limit' problem when tried to download dataset from google drive link, please try this trick.

* Go the shared folder, which contains files you want to copy to your drive  
* Select all the files you want to copy  
* In the upper right corner click on three vertical dots and select “make a copy”  
* Then, the file is copied to your personal google drive account. You can download it from your personal account.  

Output

You need to follow the directory structure of the output folder as below.

${POSE_ROOT}
|-- output
|-- |-- log
|-- |-- model_dump
|-- |-- result
`-- |-- vis
  • Creating output folder as soft link form is recommended instead of folder form because it would take large storage capacity.
  • log folder contains training log file.
  • model_dump folder contains saved checkpoints for each epoch.
  • result folder contains final estimation files generated in the testing stage.
  • vis folder contains visualized results.

3D visualization

  • Run $DB_NAME_img_name.py to get image file names in .txt format.
  • Place your test result files (preds_2d_kpt_$DB_NAME.mat, preds_3d_kpt_$DB_NAME.mat) in single or multi folder.
  • Run draw_3Dpose_$DB_NAME.m

Running 3DMPPE_POSENET

Start

  • In the main/config.py, you can change settings of the model including dataset to use, network backbone, and input size and so on.

Train

In the main folder, run

python train.py --gpu 0-1

to train the network on the GPU 0,1.

If you want to continue experiment, run

python train.py --gpu 0-1 --continue

--gpu 0,1 can be used instead of --gpu 0-1.

Test

Place trained model at the output/model_dump/.

In the main folder, run

python test.py --gpu 0-1 --test_epoch 20

to test the network on the GPU 0,1 with 20th epoch trained model. --gpu 0,1 can be used instead of --gpu 0-1.

Results

Here I report the performance of the PoseNet.

  • Download pre-trained models of the PoseNetNet in here
  • Bounding boxs (from DetectNet) and root joint coordintates (from RootNet) of Human3.6M, MSCOCO, and MuPoTS-3D dataset in here.

Human3.6M dataset using protocol 1

For the evaluation, you can run test.py or there are evaluation codes in Human36M.

Human3.6M dataset using protocol 2

For the evaluation, you can run test.py or there are evaluation codes in Human36M.

MuPoTS-3D dataset

For the evaluation, run test.py. After that, move data/MuPoTS/mpii_mupots_multiperson_eval.m in data/MuPoTS/data. Also, move the test result files (preds_2d_kpt_mupots.mat and preds_3d_kpt_mupots.mat) in data/MuPoTS/data. Then run mpii_mupots_multiperson_eval.m with your evaluation mode arguments.

MSCOCO dataset

We additionally provide estimated 3D human root coordinates in on the MSCOCO dataset. The coordinates are in 3D camera coordinate system, and focal lengths are set to 1500mm for both x and y axis. You can change focal length and corresponding distance using equation 2 or equation in supplementarial material of my paper.

Reference

@InProceedings{Moon_2019_ICCV_3DMPPE,
author = {Moon, Gyeongsik and Chang, Juyong and Lee, Kyoung Mu},
title = {Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image},
booktitle = {The IEEE Conference on International Conference on Computer Vision (ICCV)},
year = {2019}
}
Owner
Gyeongsik Moon
Postdoc in CVLAB, SNU, Korea
Gyeongsik Moon
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022