Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

Overview

pytorch-benchmark

Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption

Install

pip install pytorch-benchmark

Usage

import torch
from torchvision.models import efficientnet_b0
from pytorch_benchmark import benchmark


model = efficientnet_b0()
sample = torch.randn(8, 3, 224, 224)  # (B, C, H, W)
results = benchmark(model, sample, num_runs=100)

Sample results 💻

Macbook Pro (16-inch, 2019), 2.6 GHz 6-Core Intel Core i7
device: cpu
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 6
      total: 12
    frequency: 2.60 GHz
    model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
  gpus: null
  memory:
    available: 5.86 GB
    total: 16.00 GB
    used: 7.29 GB
  system:
    node: d40049
    release: 21.2.0
    system: Darwin
params: 5288548
timing:
  batch_size_1:
    on_device_inference:
      human_readable:
        batch_latency: 74.439 ms +/- 6.459 ms [64.604 ms, 96.681 ms]
        batches_per_second: 13.53 +/- 1.09 [10.34, 15.48]
      metrics:
        batches_per_second_max: 15.478907181264278
        batches_per_second_mean: 13.528026359855625
        batches_per_second_min: 10.343281300091244
        batches_per_second_std: 1.0922382209314958
        seconds_per_batch_max: 0.09668111801147461
        seconds_per_batch_mean: 0.07443853378295899
        seconds_per_batch_min: 0.06460404396057129
        seconds_per_batch_std: 0.006458734193132054
  batch_size_8:
    on_device_inference:
      human_readable:
        batch_latency: 509.410 ms +/- 30.031 ms [405.296 ms, 621.773 ms]
        batches_per_second: 1.97 +/- 0.11 [1.61, 2.47]
      metrics:
        batches_per_second_max: 2.4673319862230025
        batches_per_second_mean: 1.9696935126370148
        batches_per_second_min: 1.6083039834656554
        batches_per_second_std: 0.11341204895590185
        seconds_per_batch_max: 0.6217730045318604
        seconds_per_batch_mean: 0.509410228729248
        seconds_per_batch_min: 0.40529608726501465
        seconds_per_batch_std: 0.030031445467788704
Server with NVIDIA GeForce RTX 2080 and Intel Xeon 2.10GHz CPU
device: cuda
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 16
      total: 32
    frequency: 3.00 GHz
    model: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
  gpus:
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  memory:
    available: 119.98 GB
    total: 125.78 GB
    used: 4.78 GB
  system:
    node: monster
    release: 4.15.0-167-generic
    system: Linux
max_inference_memory: 736250368
params: 5288548
post_inference_memory: 21402112
pre_inference_memory: 21402112
timing:
  batch_size_1:
    cpu_to_gpu:
      human_readable:
        batch_latency: "144.815 \xB5s +/- 16.103 \xB5s [136.614 \xB5s, 272.751 \xB5\
          s]"
        batches_per_second: 6.96 K +/- 535.06 [3.67 K, 7.32 K]
      metrics:
        batches_per_second_max: 7319.902268760908
        batches_per_second_mean: 6962.865857677197
        batches_per_second_min: 3666.3496503496503
        batches_per_second_std: 535.0581873859935
        seconds_per_batch_max: 0.0002727508544921875
        seconds_per_batch_mean: 0.00014481544494628906
        seconds_per_batch_min: 0.0001366138458251953
        seconds_per_batch_std: 1.6102982159292097e-05
    gpu_to_cpu:
      human_readable:
        batch_latency: "106.168 \xB5s +/- 17.829 \xB5s [53.167 \xB5s, 248.909 \xB5\
          s]"
        batches_per_second: 9.64 K +/- 1.60 K [4.02 K, 18.81 K]
      metrics:
        batches_per_second_max: 18808.538116591928
        batches_per_second_mean: 9639.942102368092
        batches_per_second_min: 4017.532567049808
        batches_per_second_std: 1595.7983033708472
        seconds_per_batch_max: 0.00024890899658203125
        seconds_per_batch_mean: 0.00010616779327392578
        seconds_per_batch_min: 5.316734313964844e-05
        seconds_per_batch_std: 1.7829135190772566e-05
    on_device_inference:
      human_readable:
        batch_latency: "15.567 ms +/- 546.154 \xB5s [15.311 ms, 19.261 ms]"
        batches_per_second: 64.31 +/- 1.96 [51.92, 65.31]
      metrics:
        batches_per_second_max: 65.31149174711928
        batches_per_second_mean: 64.30692850265713
        batches_per_second_min: 51.918698784442846
        batches_per_second_std: 1.9599322351815833
        seconds_per_batch_max: 0.019260883331298828
        seconds_per_batch_mean: 0.015567030906677246
        seconds_per_batch_min: 0.015311241149902344
        seconds_per_batch_std: 0.0005461537255227954
    total:
      human_readable:
        batch_latency: "15.818 ms +/- 549.873 \xB5s [15.561 ms, 19.461 ms]"
        batches_per_second: 63.29 +/- 1.92 [51.38, 64.26]
      metrics:
        batches_per_second_max: 64.26476266356143
        batches_per_second_mean: 63.28565696640637
        batches_per_second_min: 51.38378232692614
        batches_per_second_std: 1.9198343850767468
        seconds_per_batch_max: 0.019461393356323242
        seconds_per_batch_mean: 0.01581801414489746
        seconds_per_batch_min: 0.015560626983642578
        seconds_per_batch_std: 0.0005498731526138171
  batch_size_8:
    cpu_to_gpu:
      human_readable:
        batch_latency: "805.674 \xB5s +/- 157.254 \xB5s [773.191 \xB5s, 2.303 ms]"
        batches_per_second: 1.26 K +/- 97.51 [434.24, 1.29 K]
      metrics:
        batches_per_second_max: 1293.3407338883749
        batches_per_second_mean: 1259.5653105357776
        batches_per_second_min: 434.23791282741485
        batches_per_second_std: 97.51424036939879
        seconds_per_batch_max: 0.002302885055541992
        seconds_per_batch_mean: 0.000805673599243164
        seconds_per_batch_min: 0.0007731914520263672
        seconds_per_batch_std: 0.0001572538140613121
    gpu_to_cpu:
      human_readable:
        batch_latency: "104.215 \xB5s +/- 12.658 \xB5s [59.605 \xB5s, 128.031 \xB5\
          s]"
        batches_per_second: 9.81 K +/- 1.76 K [7.81 K, 16.78 K]
      metrics:
        batches_per_second_max: 16777.216
        batches_per_second_mean: 9806.840626578907
        batches_per_second_min: 7810.621973929236
        batches_per_second_std: 1761.6008872740726
        seconds_per_batch_max: 0.00012803077697753906
        seconds_per_batch_mean: 0.00010421514511108399
        seconds_per_batch_min: 5.9604644775390625e-05
        seconds_per_batch_std: 1.2658293070174213e-05
    on_device_inference:
      human_readable:
        batch_latency: "16.623 ms +/- 759.017 \xB5s [16.301 ms, 22.584 ms]"
        batches_per_second: 60.26 +/- 2.22 [44.28, 61.35]
      metrics:
        batches_per_second_max: 61.346243290283894
        batches_per_second_mean: 60.25881046175457
        batches_per_second_min: 44.27827629162004
        batches_per_second_std: 2.2193085956672296
        seconds_per_batch_max: 0.02258443832397461
        seconds_per_batch_mean: 0.01662288188934326
        seconds_per_batch_min: 0.01630091667175293
        seconds_per_batch_std: 0.0007590167680596548
    total:
      human_readable:
        batch_latency: "17.533 ms +/- 836.015 \xB5s [17.193 ms, 23.896 ms]"
        batches_per_second: 57.14 +/- 2.20 [41.85, 58.16]
      metrics:
        batches_per_second_max: 58.16374528511205
        batches_per_second_mean: 57.140338855126565
        batches_per_second_min: 41.84762740950632
        batches_per_second_std: 2.1985066663972677
        seconds_per_batch_max: 0.023896217346191406
        seconds_per_batch_mean: 0.01753277063369751
        seconds_per_batch_min: 0.017192840576171875
        seconds_per_batch_std: 0.0008360147274630088

Limitations

Usage assumptions:

  • The model has as a __call__ method that takes the sample, i.e. model(sample).
  • The Model also works if the sample had a batch size of 1 (first dimension).

Feature limitations:

  • Allocated memory uses torch.cuda.max_memory_allocated, which is only available if the model resides on a CUDA device.
  • Energy consumption can only be measured on NVIDIA Jetson platforms at the moment.

Citation

If you like the tool and use it in you research, please consider citing it:

@article{hedegaard2022torchbenchmark,
  title={PyTorch Benchmark},
  author={Lukas Hedegaard},
  journal={GitHub. Note: https://github.com/LukasHedegaard/pytorch-benchmark},
  year={2022}
}
You might also like...
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

Demo for the paper
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Comments
  • torch cuda synchronize on GPUs?

    torch cuda synchronize on GPUs?

    Hello,

    Very happy to see your repo.

    I have tested the code and found that for the GPU tests, there may lack of torch synchronize when computing the device time. I am not sure how this may impact the results but I think it would make difference.

    What do you think?

    Best,

    opened by jizongFox 1
Releases(0.3.5)
Owner
Lukas Hedegaard
PhD Student | AI Researcher | Open Source Contributor
Lukas Hedegaard
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022