General-purpose program synthesiser

Overview

DeepSynth

General-purpose program synthesiser.

This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-based Search".

Authors: Anonymous

Figure

Abstract

We consider the problem of automatically constructing computer programs from input-output examples. We investigate how to augment probabilistic and neural program synthesis methods with new search algorithms, proposing a framework called distribution-based search. Within this framework, we introduce two new search algorithms: HEAP SEARCH, an enumerative method, and SQRT SAMPLING, a probabilistic method. We prove certain optimality guarantees for both methods, show how they integrate with probabilistic and neural techniques, and demonstrate how they can operate at scale across parallel compute environments. Collectively these findings offer theoretical and applied studies of search algorithms for program synthesis that integrate with recent developments in machine-learned program synthesizers.

Usage

Installation

# clone this repository
git clone https://github.com/nathanael-fijalkow/DeepSynth.git

# create your new env
conda create -n deep_synth python>=3.7 
# activate it
conda activate deep_synth
# install pip
yes | conda install pip
# install this package and the dependencies
pip install torch cython tqdm numpy matplotlib
pip install git+https://github.com/MaxHalford/vose
# For flashfill dataset
pip install sexpdata
# If you want to do the parallel experiments
pip install ray

# You are good to go :)
# To test your installation you can run the following tests:
python unit_test_algorithms.py
python unit_test_programs.py
python unit_test_algorithms.py
python unit_test_predictions.py
# Only if you installed ray
python unit_test_parallel.py

File structure

./
        Algorithms/      # the search algorithms + parallel pipeline
        DSL/             # DSL: dreamcoder, deepcoder, flashfill
        list_dataset/    # DreamCoder dataset in pickle format
        Predictions/     # all files related to the ANN for prediction of the grammars 

Reproducing the experiments

All of the files mentioned in this section are located in the root folder and follow this pattern run_*_experiments*.py.

Here is a short summary of each experiment:

  • run_random_PCFG_search.py produce a list of all programs generated under Xsec of search time by all algorithms.
  • run_random_PCFG_search_parallel.py same experiment but iwth the grammar_splitter and multiple CPUs.
  • run_experiments_ .py try to find solutions using an ANN to predict the grammar and for each algorithm logs the search data for the corresponding . The suffix parallel can also be found indicating that the algorithms are run in parallel. The semantics experiments in the paper used a trained model thatn can be obtained using produce_network.py or directly in the repository. The results can be plotted using plot_results_semantics.py.

Note that for the DreamCoder experiment in our paper, we did not use the cached evaluation of HeapSearch, this can be reproduced by setting use_heap_search_cached_eval to False in run_experiment.py.

Quick guide to using ANN to predict a grammar

Is it heavily inspired by the file model_loader.py.

First we create a prediction model:

############################
##### Hyperparameters ######
############################

max_program_depth = 4

size_max = 10  # maximum number of elements in a list (input or output)
nb_inputs_max = 2  # maximum number of inputs in an IO
lexicon = list(range(30))  # all elements of a list must be from lexicon
# only useful for VariableSizeEncoding
encoding_output_dimension = 30  # fixing the dimension

embedding_output_dimension = 10
# only useful for RNNEmbedding
number_layers_RNN = 1

size_hidden = 64

############################
######### PCFG #############
############################

deepcoder = DSL(semantics, primitive_types)
type_request = Arrow(List(INT), List(INT))
deepcoder_cfg = deepcoder.DSL_to_CFG(
    type_request, max_program_depth=max_program_depth)
deepcoder_pcfg = deepcoder_cfg.CFG_to_Uniform_PCFG()

############################
###### IO ENCODING #########
############################

# IO = [[I1, ...,Ik], O]
# I1, ..., Ik, O are lists
# IOs = [IO1, IO2, ..., IOn]
# task = (IOs, program)
# tasks = [task1, task2, ..., taskp]

#### Specification: #####
# IOEncoder.output_dimension: size of the encoding of one IO
# IOEncoder.lexicon_size: size of the lexicon
# IOEncoder.encode_IO: outputs a tensor of dimension IOEncoder.output_dimension
# IOEncoder.encode_IOs: inputs a list of IO of size n
# and outputs a tensor of dimension n * IOEncoder.output_dimension

IOEncoder = FixedSizeEncoding(
    nb_inputs_max=nb_inputs_max,
    lexicon=lexicon,
    size_max=size_max,
)


# IOEncoder = VariableSizeEncoding(
#     nb_inputs_max = nb_inputs_max,
#     lexicon = lexicon,
#     output_dimension = encoding_output_dimension,
#     )

############################
######### EMBEDDING ########
############################

# IOEmbedder = SimpleEmbedding(
#     IOEncoder=IOEncoder,
#     output_dimension=embedding_output_dimension,
#     size_hidden=size_hidden,
# )
 
IOEmbedder = RNNEmbedding(
    IOEncoder=IOEncoder,
    output_dimension=embedding_output_dimension,
    size_hidden=size_hidden,
    number_layers_RNN=number_layers_RNN,
)

#### Specification: #####
# IOEmbedder.output_dimension: size of the output of the embedder
# IOEmbedder.forward_IOs: inputs a list of IOs
# and outputs the embedding of the encoding of the IOs
# which is a tensor of dimension
# (IOEmbedder.input_dimension, IOEmbedder.output_dimension)
# IOEmbedder.forward: same but with a batch of IOs

############################
######### MODEL ############
############################

model = RulesPredictor(
    cfg=deepcoder_cfg,
    IOEncoder=IOEncoder,
    IOEmbedder=IOEmbedder,
    size_hidden=size_hidden,
)

# model = LocalRulesPredictor(
#     cfg = deepcoder_cfg,
#     IOEncoder = IOEncoder,
#     IOEmbedder = IOEmbedder,
#     # size_hidden = size_hidden,
#     )

Now we can produce the grammars:

dsl = DSL(semantics, primitive_types)
batched_grammars = model(batched_examples)
if isinstance(model, RulesPredictor):
    batched_grammars = model.reconstruct_grammars(batched_grammars)

Quick guide to train a neural network

Just copy the model initialisation used in your experiment in the file produce_network.py or use the ones provided that correspond to our experiments. You can change the hyperparameters, then run the script. A .weights file should appear at the root folder. This will train a neural network on random generated programs as described in Appendix F in the paper.

Quick guide to using a search algorithm for a grammar

There are already functions for that in run_experiment.py, namely run_algorithm and run_algorithm_parallel. The former enables you to run the specified algorithm in a single thread while the latter in parallel with a grammar splitter. To produce a is_correct function you can use make_program_checker in experiment_helper.py.

How to download the DeepCoder dataset?

First, download the archive from here (Deepcoder repo): https://storage.googleapis.com/deepcoder/dataset.tar.gz in a folder deepcoder_dataset at the root of DeepSynth. Then you simply need to:

gunzip dataset.tar.gz
tar -xf dataset.tar

You should see a few JSON files.

You might also like...
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

VGGFace2-HQ - A high resolution face dataset for face editing purpose
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).

Scikit-learn compatible estimation of general graphical models
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Comments
  • Questions about the installation instructions.

    Questions about the installation instructions.

    Hi Nathanaël,

    I started to review your JOSS submission and have some questions about the installation part in the README.

    Quote the version specification

    conda create -n deep_synth python>=3.7 
    

    should be changed to the following, otherwise, it's not accepted by some shells such as zsh.

    conda create -n deep_synth "python>=3.7"
    

    How to install PyTorch

    I would recommend providing the compatible PyTorch version requirements and some potential commands to install the compatible versions (such as different CUDA/CPU versions). Since conda env is already created, one can also install PyTorch via conda.

    > pip install torch cython tqdm numpy matplotlib
    
    ERROR: Could not find a version that satisfies the requirement torch (from versions: none)
    ERROR: No matching distribution found for torch
    

    Missing pip package

    pip install scipy  # required by unit_tests_algorithms.py
    

    Correct the script names

    python unit_test_algorithms.py
    python unit_test_programs.py
    python unit_test_algorithms.py
    python unit_test_predictions.py
    # Only if you installed ray
    python unit_test_parallel.py
    

    The script name should be corrected.

    python unit_tests_algorithms.py
    python unit_tests_programs.py
    python unit_tests_algorithms.py
    python unit_tests_predictions.py
    

    Missing file for unit_test_parallel.py.

    Fail to run the tests

    > python unit_tests_algorithms.py
    Traceback (most recent call last):
      File "/myapps/research/synthesis/DeepSynth/unit_tests_algorithms.py", line 11, in <module>
        from dsl import DSL
      File "/myapps/research/synthesis/DeepSynth/dsl.py", line 6, in <module>
        from cfg import CFG
      File "/myapps/research/synthesis/DeepSynth/cfg.py", line 4, in <module>
        from pcfg_logprob import LogProbPCFG
      File "/myapps/research/synthesis/DeepSynth/pcfg_logprob.py", line 7, in <module>
        import vose
      File "/home/aplusplus/anaconda3/envs/deep_synth/lib/python3.9/site-packages/vose/__init__.py", line 1, in <module>
        from .sampler import Sampler
      File "vose/sampler.pyx", line 1, in init vose.sampler
    ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 232 from C header, got 216 from PyObject
    

    A specific package version may be needed.

    Best, Shengwei

    opened by njuaplusplus 5
Releases(joss-release)
  • joss-release(Oct 13, 2022)

    What's Changed

    • More documentation and addition of guide to use the software.
    • Install requirements by @bzz in https://github.com/nathanael-fijalkow/DeepSynth/pull/3
    Source code(tar.gz)
    Source code(zip)
Owner
Nathanaël Fijalkow
Computer science researcher
Nathanaël Fijalkow
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022