Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Overview

Perceiver - Pytorch

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Install

$ pip install perceiver-pytorch

Usage

import torch
from perceiver_pytorch import Perceiver

model = Perceiver(
    num_fourier_features = 6,    # number of fourier features, with original value (2 * K + 1)
    depth = 48,                  # depth of net, in paper, they went deep, making up for lack of attention
    num_latents = 6,             # number of latents, or induced set points, or centroids. different papers giving it different names
    cross_dim = 512,             # cross attention dimension
    latent_dim = 512,            # latent dimension
    cross_heads = 1,             # number of heads for cross attention. paper said 1
    latent_heads = 8,            # number of heads for latent self attention, 8
    cross_dim_head = 64,
    latent_dim_head = 64,
    num_classes = 1000,          # output number of classes
    attn_dropout = 0.,
    ff_dropout = 0.,
    weight_tie_layers = False    # whether to weight tie layers (optional, as indicated in the diagram)
)

img = torch.randn(1, 224 * 224) # 1 imagenet image, pixelized

model(img) # (1, 1000)

Citations

@misc{jaegle2021perceiver,
    title   = {Perceiver: General Perception with Iterative Attention},
    author  = {Andrew Jaegle and Felix Gimeno and Andrew Brock and Andrew Zisserman and Oriol Vinyals and Joao Carreira},
    year    = {2021},
    eprint  = {2103.03206},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Latent averaging to the logits?

    Latent averaging to the logits?

    I read through the paper last night and came away confused about a few things. I looked through your code hoping for some clarity.

    One issue that doesn't seem to be explained in the paper (or I am missing it) is how the authors go from a set of latents to the logits used at the classification head. You implemented this by taking the mean of the latent set:

    https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_pytorch.py#L203

    Is this actually how the authors convert to logits?

    opened by neonbjb 7
  • PerceiverAR?

    PerceiverAR?

    Hey @lucidrains - love this repo, and still trying to wrap my head around the various difference between Perceiver architectures; how hard would it be to extend PerceiverIO to PerceiverAR; what fundamentally needs to change?

    opened by siddk 5
  • Not using the classification head in Perceiver

    Not using the classification head in Perceiver

    Hi @lucidrains, thank you for your great job!

    I'd like to use the Perceiver (not PerceiverIO) without the classification head (average and projection). Do you think we could add an option to avoid using it? I can do a PR if you want.

    Thanks!

    opened by gegallego 4
  • Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Hi,

    According to perceiver io paper's (https://arxiv.org/abs/2107.14795) architectural details, they mention that the decoder attention block contains a cross attention block (4), which is already implemented in the perceiver_io.py script (Line 151), followed by a Feedforward network, given by equation (6) in the paper, which is not present in that script. I am not aware of the repercussions of not having FF in the decoder module but it might be a good idea to have it in the implementation. Something like self.decoder_ff = PreNorm(FeedForward(queries_dim)) would do the job. Experimentally, the authors had found that omitting equation (5) is helpful.

    opened by Hritikbansal 4
  • Positional encoding are already part of the input

    Positional encoding are already part of the input

    Hello! First of all, thank you for this implementation.

    My inputs already have the proper positional encoding as part of the channel axis. Would it be possible to add a feature to deactivate the default implementation of the positional encoding?

    Thank you!

    opened by Atlis 4
  • x = self.latents + self.pos_emb

    x = self.latents + self.pos_emb

    self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
    self.pos_emb = nn.Parameter(torch.randn(num_latents, latent_dim))
    ...
    x = self.latents + self.pos_emb
    

    I'm not very familiar with pytorch, but does this make sense? I mean, what's intended when 2 trainable weight matrices are simply summed and that's that's the only place where both latents and pos_emb appear. It looks like it can be replaced with only one matrix.

    opened by galchinsky 4
  • Fourier encoding is not similar to the paper

    Fourier encoding is not similar to the paper

    First of all, thanks for sharing the code !

    I have a follow up question to #4.

    In the paper, the authors mentioned about [sin(f_kπx_d), cos(f_kπx_d)], where f_k is a bank of frequencies spaced log-linearly between 1 and µ/2. Can you maybe point out how you came to the 1/2**i scaling in the code ?

    https://github.com/lucidrains/perceiver-pytorch/blob/6ae733773d29cb29383f3ac7b45af8cb6bd2c0dc/perceiver_pytorch/perceiver_pytorch.py#L28-L35

    Thanks!

    opened by cheneeheng 4
  • Fourier encoding should be for position coordinates instead of byte array

    Fourier encoding should be for position coordinates instead of byte array

    The fourier_encode function as implemented takes as input a byte array x and directly encodes it with sin/cos before concating with the input.

    As I understand the NeRF position encodings, they encode the x/y/etc. position coordinates, and not a transformation of the data itself. From the Perceiver paper:

    We parametrize the frequency encoding to take the values [sin(fkπxd), cos(fkπxd)], where the frequencies fk is the kth band of a bank of frequencies spaced log-linearly between 1 and µ/2... For example, by allowing the network to resolve the maximum frequency present in an input array, we can encourage it to learn to compare the values of bytes at any positions in the input array. xd is the value of the input position along the dth dimension (e.g. for images d = 2 and for video d = 3). xd takes values in [−1, 1] for each dimension. We concatenate the raw positional value xd to produce the final representation of position. This results in a positional encoding of size d(2K + 1).

    NeRF position encoding examples:

    • https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/run_nerf_helpers.py#L22
    • https://github.com/ankurhanda/nerf2D
    opened by eridgd 4
  • Positional encoding frequency bands should be linearly spaced

    Positional encoding frequency bands should be linearly spaced

    A small bug, but as alluded to in this comment by @marcdumon, it seems as though the frequency bands are indeed spaced linearly in the official JAX implementation.

    opened by djl11 2
  • Bug in fourier_encode (?)

    Bug in fourier_encode (?)

    Thank you for this great implementation. I'm learning a lot from it!

    I think I found a problem in the fourier_encode method. In this line: https://github.com/lucidrains/perceiver-pytorch/blob/b33aced4e1b266aeb1383e03ab63f0a9951f9126/perceiver_pytorch/perceiver_pytorch.py#L36

    the scales are always the same whatever value of parameter base. Example:

    max_freq = 10, num_bands=6, base = 2
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    max_freq = 10, num_bands=6, base = 10
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    opened by marcdumon 2
  • Attention softmax is applied to incorrect dimension?

    Attention softmax is applied to incorrect dimension?

    I am studying multi-head attention. When I was reading through [1], I found that the attenion softmax is applied over the last dimension of the similarity tensor sim:

            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
    
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
    
            if exists(mask):
                <removed>
    
            # attention, what we cannot get enough of
            attn = sim.softmax(dim = -1)
    

    If I understand correctly sim has the shape (b*h) n1 n2. The softmax is computed over the last dimension n2. Shouldn't the softmax be applied to matrices with all the similarity values of a single head (i.e. with shape n1, n2)?

    [1] https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_io.py#L97

    opened by breuderink 2
  • Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Hey Lucid, love the work, it appears you deprecated base in fourier_encode at https://github.com/lucidrains/perceiver-pytorch/commit/144b0d9716a7212b5fd6d95a2267c4d4a08b56a7

    But experimental.py, gated.py, mixed_latents.py are still trying to define the base within the forward pass. https://github.com/lucidrains/perceiver-pytorch/blob/abbb5d5949d3509c57749bd134f5068f2761aac7/perceiver_pytorch/experimental.py#L122 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/mixed_latents.py#L85 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/gated.py#L103

    Thanks again, keep up the great work.

    opened by TannerLaBorde 0
  • Audio + Text data?

    Audio + Text data?

    Can someone please guide me on how you can process both audio and .txt data through perceiver simultaneously for multimodality learning?

    An example code would be nice.

    Thanks

    opened by Sidz1812 1
  • just a suggestion

    just a suggestion

    Hi I like to start with thanking you for such a great work with a lot of great implementations. I have a small suggestion. I suggest for all your codes/modules try to add if __name__ == "__main__": so that if someone just wants to use one file/module can easily try that without having going through whole implementations. for example I am trying to use the this, in case of having a if __name__ == "__main__": I can easily try to run a random input and see how it will work. This will increase the usability with a huge amount.

    Keep up the great work :)

    opened by seyeeet 4
  • What should I change if I want to use data with input size 720*184

    What should I change if I want to use data with input size 720*184

    thanks for sharing this code, I was wondering what should I change if I want to be able to use data that can be converted into images with an input size of 720*184? thanks in advance

    opened by Oussamab21 0
  • Question regarding queries dimensionality in Perceiver IO

    Question regarding queries dimensionality in Perceiver IO

    Hi @lucidrains,

    I think I may be missing something - why do we define the perceiver IO queries vector to have a batch dimension (i.e. queries = torch.randn(1, 128, 32))? Was this just to make the code work nicely? Shouldnt we be using queries = torch.randn(128, 32) ? I expect to use the same embedding for all of my batch elements, which is IIUC what your code is doing.

    opened by pcicales 3
Releases(0.8.6)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022