Sequence-tagging using deep learning

Overview

Classification using Deep Learning

Requirements

  • PyTorch version >= 1.9.1+cu111
  • Python version >= 3.8.10
  • PyTorch-Lightning version >= 1.4.9
  • Huggingface Transformers version >= 4.11.3
  • Tensorboard version >= 2.6.0
  • Pandas >= 1.3.4
  • Scikit-learn: numpy>=1.14.6, scipy>=1.1.0, threadpoolctl>=2.0.0, joblib>=0.11

Installation

pip3 install transformers
pip3 install pytorch-lightning
pip3 install tensorboard
pip3 install pandas
pip3 install scikit-learn
git clone https://github.com/vineetk1/clss.git
cd clss

Note that the default directory is clss. Unless otherwise stated, all commands from the Command-Line-Interface must be delivered from the default directory.

Download the dataset

  1. Create a data directory.
mkdir data
  1. Download a dataset in the data directory.

Saving all informtion and results of an experiment

All information about the experiment is stored in a unique directory whose path starts with tensorboard_logs and ends with a unique version-number. Its contents consist of hparams.yaml, hyperperameters_used.yaml, test-results.txt, events.* files, and a checkpoints directory that has one or more checkpoint-files.

Train, validate, and test a model

Following command trains a model, saves the last checkpoint plus checkpoints that have the lowest validation loss, runs the test dataset on the checkpointed model with the lowest validation loss, and outputs the results of the test:

python3 Main.py input_param_files/bert_seq_class

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class. An explanation on the contents of this file is at input_param_files/README.md. A list of all the hyper-parameters is in the PyTorch-Lightning documentation, and any hyper-parameter can be used.
To assist in Training, the two parameters auto_lr_find and auto_scale_batch_size in the file input_param_files/bert_seq_class enable the software to automatically find an initial Learning-Rate and a Batch-Size respectively.
As training progresses, graphs of "training-loss vs. epoch #", "validation-loss vs. epoch #", and "learning-rate vs. batch #" are plotted in real-time on the TensorBoard. Training is stopped by typing, at the Command-Line-Interface, the keystroke ctrl-c. The current training information is checkpointed, and training stops. Training can be resumed, at some future time, from the checkpointed file.
Dueing testing, the results are sent to the standard-output, and also saved in the *test-results.txt" file that include the following: general information about the dataset and the classes, confusion matrix, precision, recall, f1, average f1, and weighted f1.

Resume training, validation, and testing a model with same hyper-parameters

Resume training a checkpoint model with the same model- and training-states by using the following command:

python3 Main.py input_param_files/bert_seq_class-res_from_chkpt

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class-res_from_chkpt. An explanation on the contents of this file is at input_param_files/README.md.

Change hyper-parameters and continue training, validation, and testing a model

Continue training a checkpoint model with the same model-state but different hyperparameters for the training-state by using the following command:

python3 Main.py input_param_files/bert_seq_class-ld_chkpt

The user-settable hyper-parameters are in the file input_param_filesbert_seq_class-ld_chkpt. An explanation on the contents of this file is at input_param_files/README.md.

Further test a checkpoint model with a new dataset

Test a checkpoint model by using the following command:

python3 Main.py input_param_files/bert_seq_class-ld_chkpt_and_test

The user-settable hyper-parameters are in the file input_param_files/bert_seq_class-ld_chkpt_and_test. An explanation on the contents of this file is at input_param_files/README.md.

Owner
Vineet Kumar
Vineet Kumar
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022