Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Overview

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes

Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Kai-En Lin1, Lei Xiao2, Feng Liu2, Guowei Yang1, Ravi Ramamoorthi1

1University of California, San Diego, 2Facebook Reality Labs

Project Page | Paper | Supplementary Materials | Pretrained models | Dataset | Preprocessing script

Requirements

Install required packages

Make sure you have up-to-date NVIDIA drivers supporting CUDA 11.1 (10.2 could work but need to change cudatoolkit package accordingly)

Run

conda env create -f environment.yml
conda activate video_viewsynth

Usage

Rendering

  1. Download our pretrained checkpoint and testing data. Extract the content to [path_to_data_directory]. It contains frames and background folders, as well as poses_bounds.npy.

  2. In configs, setup data path by changing render_video.txt

    root_dir should point to the frames folder mentioned in 1. and bg_dir should point to background folder.

    out_dir can be your desired output folder.

    ckpt_path should be the pretrained checkpoint path.

  3. Run python render_llff_video.py --config [config_file_path]

    e.g. python render_llff_video.py --config ../configs/render_video.txt

  • (Optional) For your own data, please run prepare_data.sh

    sh render.sh [frame_folder] [starting_frame] [ending_frame] [output_folder_name]

    Make sure your data is in this structure before running

    [frame_folder] --- cam00 --- 00000.jpg
                    |         |- 00001.jpg
                    |         ...
                    |- cam01
                    |- cam02
                    ...
                    |- poses_bounds.npy
    

    e.g. sh render.sh ~/deep_3d_data/frames 0 20 qual

Training

Train MPI

  1. Download RealEstate10K dataset and extract the frames. There are scripts in preprocessing folder which can be used to generate the data.

    The order should be download_data.py -> extract_frames.py -> compress_data.py.

    Remember to change the path in compress_data.py.

  2. Change the paths in config file train_realestate10k.txt

  3. Run

    cd train_mpi
    python train.py --config ../configs/train_realestate10k.txt
    

Train Mask

Once MPI is trained, we can use the checkpoint to train 3D mask network.

  1. Download dataset

  2. Change the paths in config file train_mask.txt

  3. Run

    cd train_mask
    python train.py --config ../configs/train_mask.txt
    

Citation

@inproceedings {lin2021deep,
    title = {Deep 3D Mask Volume for View Synthesis of Dynamic Scenes},
    author = {Kai-En Lin and Lei Xiao and Feng Liu and Guowei Yang and Ravi Ramamoorthi},
    booktitle = {ICCV},
    year = {2021},
}
Owner
Ken Lin
Ken Lin
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022