GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

Overview

GEP (GDB Enhanced Prompt)

asciicast

GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility.

Why I need this plug-in?

GDB's original prompt is using hardcoded built-in GNU readline library, we can't add our custom function and key binding easily. The old way to implement them is by patching the GDB's C source code and compiling it again.

But now, you can write your function in Python and use arbitrary key binding easily with GEP without any patching!

And also, GEP has some awesome features already, you can directly use it!

Features

  • Ctrl+R for fzf history reverse search
  • up-arrow for partial string matching in history
  • TAB for auto-completion with floating window
  • fish-like autosuggestions
  • has the ability to build custom key binding and its callback function by modifying geprc.py

How to install it?

Make sure you have GDB 8.0 or higher compiled with Python3.6+ bindings, then:

  1. Install fzf: Installation

  2. Download this plug-in and install it:

git clone https://github.com/lebr0nli/GEP.git && \
cd GEP && \
sh install.sh

Note: This plug-in is using prompt-toolkit 2.0.10 (because IDK why prompt-toolkit 3 is not working with GDB Python API), so the install.sh will download prompt_toolkit==2.0.10 to ~/GEP/. Maybe we can build our prompt toolkit just for this plug-in in the future.

  1. Add source ~/GEP/.gdbinit-gep to the last line of your ~/.gdbinit

You can run:

echo 'source ~/GEP/.gdbinit-gep' >> ~/.gdbinit
  1. Enjoy!

For more configuration

You can modify configuration about history and auto-completion in ~/GEP/.gdbinit-gep.

You can also add your custom key bindings by modifying ~/GEP/geprc.py.

The trade-offs

Since GDB doesn't have a good Python API to fully control and emulate its prompt, this plug-in has some side effects.

However, the side effects are avoidable, here are the guides to avoid them:

gdb.event.before_prompt

The GDB Python API event: gdb.event.before_prompt may be called only once.

So if you are using a GDB plug-in that is listening on this event, this plug-in will cause some bugs.

As far as I know, pwndbg and gef won't be bothered by this side effect now.

To avoid this, you can change the callback function by adding them to gdb.prompt_hook, gdb.prompt_hook has almost the same effects with event.before_prompt, but gdb.prompt_hook can be directed invoke, so this plug-in still can emulate that callback for you!

dont-repeat

When your input is empty and directly press ENTER, GDB will execute the previous command from history if that command doesn't have the property: dont-repeat.

As far as I know, there is no GDB API for checking a command's property.

So, I added some commonly used commands (for original GDB API and GEF) which have that property in a list to avoid repeatedly executing them.

If you have some user-defined function that has dont-repeat property, add your command into the list manually, too.

Note: The list is in .gdbinit-gep.py and the variable name is DONT_REPEAT.

If you found some commands which should or shouldn't be added in that list, let me know on the issue page, thanks!

Bugs, suggestions, and ideas

If you found any bug, or you have any suggestions/ideas about this plug-in, feel free to leave your feedback on the GitHub issue page or send me a pull request!

Thanks!

Owner
Alan Li
Stay hungry, stay foolish. Keep hacking!
Alan Li
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022