Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

Overview

arXiv, porject page, paper

Blind Image Decomposition (BID)

Blind Image Decomposition is a novel task. The task requires separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixing mechanism are unknown.

We invite our community to explore the novel BID task, including discovering interesting areas of application, developing novel methods, extending the BID setting,and constructing benchmark datasets.

Blind Image Decomposition
Junlin Han, Weihao Li, Pengfei Fang, Chunyi Sun, Jie Hong, Ali Armin, Lars Petersson, Hongdong Li
DATA61-CSIRO and Australian National University
Preprint

BID demo:

BIDeN (Blind Image Decomposition Network):

Applications of BID

Deraining (rain streak, snow, haze, raindrop):
Row 1-6 presents 6 cases of a same scene. The 6 cases are (1): rainstreak, (2): rain streak + snow, (3): rain streak + light haze, (4): rain streak + heavy haze, (5): rain streak + moderate haze + raindrop, (6)rain streak + snow + moderate haze + raindrop.

Joint shadow/reflection/watermark removal:

Prerequisites

Python 3.7 or above.

For packages, see requirements.txt.

Getting started

  • Clone this repo:
git clone https://github.com/JunlinHan/BID.git
  • Install PyTorch 1.7 or above and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml. (Recommend)

    We tested our code on both Windows and Ubuntu OS.

BID Datasets

BID Train/Test

  • Detailed instructions are provided at ./models/.
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

Task I: Mixed image decomposition across multiple domains:

Train (biden n, where n is the maximum number of source components):

python train.py --dataroot ./datasets/image_decom --name biden2 --model biden2 --dataset_mode unaligned2
python train.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3
...
python train.py --dataroot ./datasets/image_decom --name biden8 --model biden8 --dataset_mode unaligned8

Test a single case (use n = 3 as an example):

Test a single case:
python test.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3 --test_input A
python test.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3 --test_input AB

... ane other cases. change test_input to the case you want.

Test all cases:

python test2.py --dataroot ./datasets/image_decom --name biden3 --model biden3 --dataset_mode unaligned3

Task II: Real-scenario deraining:

Train:

python train.py --dataroot ./datasets/rain --name task2 --model rain --dataset_mode rain

Task III: Joint shadow/reflection/watermark removal:

Train:

python train.py --dataroot ./datasets/jointremoval_v1 --name task3_v1 --model jointremoval --dataset_mode jointremoval
or
python train.py --dataroot ./datasets/jointremoval_v2 --name task3_v2 --model jointremoval --dataset_mode jointremoval

The test results will be saved to an html file here: ./results/.

Apply a pre-trained BIDeN model

We provide our pre-trained BIDeN models at: https://drive.google.com/drive/folders/1UBmdKZXYewJVXHT4dRaat4g8xZ61OyDF?usp=sharing

Download the pre-tained model, unzip it and put it inside ./checkpoints.

Example usage: Download the dataset of task II (rain) and pretainred model of task II (task2). Test the rain streak case.

python test.py --dataroot ./datasets/rain --name task2 --model rain --dataset_mode rain --test_input B 

Evaluation

For FID score, use pytorch-fid.

For PSNR/SSIM/RMSE, see ./metrics/.

Raindrop effect

See ./raindrop/.

Citation

If you use our code or our results, please consider citing our paper. Thanks in advance!

@inproceedings{han2021bid,
  title={Blind Image Decomposition},
  author={Junlin Han and Weihao Li and Pengfei Fang and Chunyi Sun and Jie Hong and Mohammad Ali Armin and Lars Petersson and Hongdong Li},
  booktitle={arXiv preprint arXiv:2108.11364},
  year={2021}
}

Contact

[email protected] or [email protected]

Acknowledgments

Our code is developed based on DCLGAN and CUT. We thank the auhtors of MPRNet, perceptual-reflection-removal, Double-DIP, Deep-adversarial-decomposition for sharing their source code. We thank exposure-fusion-shadow-removal and ghost-free-shadow-removal for providing the source code and results. We thank pytorch-fid for FID computation.

Owner
Ugrad, ANU. Working on vision/graphics. Email: [email protected]
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022