VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

Related tags

Deep LearningVL-LTR
Overview

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

Usage

First, install PyTorch 1.7.1+, torchvision 0.8.2+ and other required packages as follows:

conda install -c pytorch pytorch torchvision
pip install timm==0.3.2
pip install ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git
pip install mmcv==1.3.14

Data preparation

ImageNet-LT

Download and extract ImageNet train and val images from here. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively.

Then download and extract the wiki text into the same directory, and the directory tree of data is expected to be like this:

./data/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg
  wiki/
  	desc_1.txt
  ImageNet_LT_test.txt
  ImageNet_LT_train.txt
  ImageNet_LT_val.txt
  labels.txt

After that, download the CLIP's pretrained weight RN50.pt and ViT-B-16.pt into the pretrained directory from https://github.com/openai/CLIP.

Places-LT

Download the places365_standard data from here.

Then download and extract the wiki text into the same directory. The directory tree of data is expected to be like this (almost the same as ImageNet-LT):

./data/places/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg
  wiki/
  	desc_1.txt
  Places_LT_test.txt
  Places_LT_train.txt
  Places_LT_val.txt
  labels.txt

iNaturalist 2018

Download the iNaturalist 2018 data from here.

Then download and extract the wiki text into the same directory. The directory tree of data is expected to be like this:

./data/iNat/
  train_val2018/
  wiki/
  	desc_1.txt
  categories.json
  test2018.json
  train2018.json
  val.json

Evaluation

To evaluate VL-LTR with a single GPU run:

  • Pre-training stage
bash eval.sh ${CONFIG_PATH} 1 --eval-pretrain
  • Fine-tuning stage:
bash eval.sh ${CONFIG_PATH} 1

The ${CONFIG_PATH} is the relative path of the corresponding configuration file in the config directory.

Training

To train VL-LTR on a single node with 8 GPUs for:

  • Pre-training stage, run:
bash dist_train_arun.sh ${PARTITION} ${CONFIG_PATH} 8
  • Fine-tuning stage:

    • First, calculate the $\mathcal L_{\text{lin}}$ of each sentence for AnSS method by running this:
    bash eval.sh ${CONFIG_PATH} 1 --eval-pretrain --select
    • then, running this:
    bash dist_train_arun.sh ${PARTITION} ${CONFIG_PATH} 8

The ${CONFIG_PATH} is the relative path of the corresponding configuration file in the config directory.

Results

Below list our model's performance on ImageNet-LT, Places-LT, and iNaturalist 2018.

Dataset Backbone Top-1 Accuracy Download
ImageNet-LT ResNet-50 70.1 Weights
ImageNet-LT ViT-Base-16 77.2 Weights
Places-LT ResNet-50 48.0 Weights
Places-LT ViT-Base-16 50.1 Weights
iNaturalist 2018 ResNet-50 74.6 Weights
iNaturalist 2018 ViT-Base-16 76.8 Weights

For more detailed information, please refer to our paper directly.

Citation

If you are interested in our work, please cite as follows:

@article{tian2021vl,
  title={VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition},
  author={Tian, Changyao and Wang, Wenhai and Zhu, Xizhou and Wang, Xiaogang and Dai, Jifeng and Qiao, Yu},
  journal={arXiv preprint arXiv:2111.13579},
  year={2021}
}

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

You might also like...
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Implementation of
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Official codes for the paper
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

[ICCV2021] Official code for
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

Comments
  • Problem about running eval.sh

    Problem about running eval.sh

    """ #!/usr/bin/env bash set -x

    export NCCL_LL_THRESHOLD=0

    CONFIG=$1 GPUS=$1 CPUS=$[GPUS*2] PORT=${PORT:-8886}

    CONFIG_NAME=${CONFIG##/} CONFIG_NAME=${CONFIG_NAME%.}

    OUTPUT_DIR="./checkpoints/eval" if [ ! -d $OUTPUT_DIR ]; then mkdir ${OUTPUT_DIR} fi

    python -u main.py
    --port=$PORT
    --num_workers 4
    --resume "./checkpoints/${CONFIG_NAME}/checkpoint.pth"
    --output-dir ${OUTPUT_DIR}
    --config $CONFIG ${@:3}
    --eval
    2>&1 | tee -a ${OUTPUT_DIR}/train.log """ I have two A100, so set GPUS is 2. All other settings according to ReadME.md but I got a problem when running eval.sh """ File "eval.sh", line 4 export NCCL_LL_THRESHOLD=0 ^ SyntaxError: invalid syntax

    """

    opened by euminds 2
  • Mismatch between code and diagram in paper for the fine-tuning phase

    Mismatch between code and diagram in paper for the fine-tuning phase

    In fig 3, stage 2 from the paper, it looks like value for the attention is calculated based on Vision and language (Q is vision, K is language) and then applied to the language (V). But in the code, the attention is applied to the visual features. Can you verify which one is the correct way? @ChangyaoTian

    opened by rahulvigneswaran 0
  • pre-trained weights with TorchScript?

    pre-trained weights with TorchScript?

    Hello, Thanks for the great work! May I ask if it's possible for you to also provide the checkpoint weight in a TorchScript version?

    It's something like:

    import torch
    import torchvision.models as models
    
    model = models.resnet50()
    traced = torch.jit.trace(model, (torch.rand(4, 3, 224, 224),))
    torch.jit.save(traced, "test.pt")
    
    # load model
    model = torch.jit.load("test.pt")
    
    opened by xinleihe 0
Releases(ECCV-2022-video)
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022