A library for implementing Decentralized Graph Neural Network algorithms.

Overview

decentralized-gnn

A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. Developed code supports the publication p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks.

Quick Start

To generate a local instance of a decentralized learning device:

from decentralized.devices import GossipDevice
from decentralized.mergers import SlowMerge
from learning.nn import MLP
node = ... # a node identifier object (can be any object)
features = ... # feature vector, should have the same length for each device
labels = ... # one hot encoding of class labels, zeroes if no label is known
predictor = MLP(features.shape[0], labels.shape[0])  # or load a pretrained model with
device = GossipDevice(node, predictor, features, labels, gossip_merge=SlowMerge)

In this code, the type of the device (GossipDevice)and the variable merge protocol (SlowMerge) work together to define a decentralized learning seting for a Graph Neural Network that runs on and takes account of unstructured peer-to-peer links of uncertain availability.

Then, when possible (e.g. at worst, whenever devices send messages to the others for other reasons) perform the following information exchange scheme between linked devices u and v:

send = u.send()
receive = v.receive(u.name, send)
u.ack(v.name, receive)

🛠️ Simulations

Simulations on many devices automatically generated by existing datasets can be easily set up and run per the following code:

from decentralized.devices import GossipDevice
from decentralized.mergers import AvgMerge
from decentralized.simulation import create_network

dataset_name = ... # "cora", "citeseer" or "pubmed"
network, test_labels = create_network(dataset_name, 
                                      GossipDevice,
                                      pretrained=False,
                                      gossip_merge=AvgMerge,
                                      gossip_pull=False,
                                      seed=0)
for epoch in range(800):
    network.round()
    accuracy_base = sum(1. if network.devices[u].predict(False) == label else 0 for u, label in test_labels.items()) / len(test_labels)
    accuracy = sum(1. if network.devices[u].predict() == label else 0 for u, label in test_labels.items()) / len(test_labels)
    print(f"Epoch {epoch} \t Acc {accuracy:.3f} \t Base acc {accuracy_base:.3f}")

In the above code, datasets are automatically downloaded using DGL's interface. Then, devices are instantiated given desired setting preferences.

⚠️ Some merge schemes take up a lot of memory to simulate.

📓 Citation

TBD
Owner
Multimedia Knowledge and Social Analytics Lab
MKLab is part of the Information Technologies Institute.
Multimedia Knowledge and Social Analytics Lab
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023