Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Related tags

Deep LearningRISDA
Overview

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022)

Prerequisite

  • PyTorch >= 1.2.0
  • Python3
  • torchvision
  • argparse
  • numpy

Dataset

  • Imbalanced CIFAR. The original data will be downloaded and converted by imbalancec_cifar.py
  • Imbalanced ImageNet
  • The paper also reports results on iNaturalist 2018(https://github.com/visipedia/inat_comp).

CIFAR

CIFAR-LT-100,long-tailed imabalance ratio of 200
python RISDA.py --gpu 3 --lr 0.1 --alpha 0.5 --beta 1 --imb_factor 0.005 --dataset cifar100 --num_classes 100 --save_name simple --idx cifar_im200
CIFAR-LT-100,long-tailed imabalance ratio of 100
python RISDA.py --gpu 3 --lr 0.1 --alpha 0.5 --beta 0.75 --imb_factor 0.01 --dataset cifar100 --num_classes 100 --save_name simple --idx cifar_im100

More details will be uploaded soon.

Acknowledgements

Some codes in this project are adapted from MetaSAug and ISDA. We thank them for their excellent projects.

Citation

If you find this code useful for your research, please cite our paper.

Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022