NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

Overview

OptiPrompt

This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall.

We propose OptiPrompt, a simple and effective approach for Factual Probing. OptiPrompt optimizes the prompts on the input embedding space directly. It outperforms previous prompting methods on the LAMA benchmark. Furthermore, in order to better interprete probing results, we propose control experiments based on the probing results on randomly initialized models. Please check our paper for details.

Quick links

Setup

Install dependecies

Our code is based on python 3.7. All experiments are run on a single GPU.

Please install all the dependency packages using the following command:

pip install -r requirements.txt

Download the data

We pack all datasets we used in our experiments here. Please download it and extract the files to ./data, or run the following commands to autoamtically download and extract it.

bash script/download_data.sh

The datasets are structured as below.

data
├── LAMA-TREx                         # The original LAMA-TREx test set (34,039 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx_UHN                     # The LAMA-TREx_UHN test set (27,102 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx-easy-hard               # The easy and hard partitions of the LAMA-TREx dataset (check the paper for details)
│   ├── Easy                          # The LAMA-easy partition (10,546 examples)
│   │   ├── P17.jsonl                 # Testing file for the relation `P17`
│   │   └── ...
│   └── Hard                          # The LAMA-hard partition (23,493 examples)
│       ├── P17.jsonl                 # Testing file for the relation `P17`
│       └── ...
├── autoprompt_data                   # Training data collected by AutoPrompt
│   ├── P17                           # Train/dev/test files for the relation `P17`
│   │   ├── train.jsonl               # Training examples
│   │   ├── dev.jsonl                 # Development examples
│   │   └── test.jsonl                # Test examples (the same as LAMA-TREx test set)
│   └── ...
└── cmp_lms_data                      # Training data collected by ourselves which can be used for BERT, RoBERTa, and ALBERT (we only use this dataset in Table 6 in the paper)
    ├── P17                           # Train/dev/test files for the relation `P17`
    │   ├── train.jsonl               # Training examples
    │   ├── dev.jsonl                 # Development examples
    │   ├── test.jsonl                # Test examples (a subset of the LAMA-TREx test set, filtered using the common vocab of three models)
    └── ...

Run OptiPrompt

Train/evaluate OptiPrompt

You can use code/run_optiprompt.py to train or evaluate the prompts on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_optiprompt.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions \
    [--init_manual_template] [--num_vectors 5 | 10]

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • init_manual_template: whether initialize the dense vectors in OptiPrompt using the manual prompts.
  • num_vectors: how many dense vectors are added in OptiPrompt (this argument is valid only when init_manual_template is not set).
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_optiprompt.sh) to run OptiPrompt on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_opti.sh

The default setting of this script is to run OptiPromot initialized with manual prompts on the pre-trained bert-base-cased model (no random initialization is used). The results will be stored in the outputs directory.

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_optiprompt.sh if you want to run experiments on other settings.

Run Fine-tuning

We release the code that we used in our experiments (check Section 4 in the paper).

Fine-tuning language models on factual probing

You can use code/run_finetune.py to fine-tune a language model on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_finetune.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_finetune.sh) to run fine-tuning on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_finetune.sh

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_finetune.sh if you want to run experiments on other settings.

Evaluate LAMA/LPAQA/AutoPrompt prompts

We provide a script to evaluate prompts released in previous works (based on code/run_finetune.py with only --do_eval). Please use the foolowing command:

bash scripts/run_eval_prompts {lama | lpaqa | autoprompt}

Questions?

If you have any questions related to the code or the paper, feel free to email Zexuan Zhong ([email protected]) or Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{zhong2021factual,
   title={Factual Probing Is [MASK]: Learning vs. Learning to Recall},
   author={Zhong, Zexuan and Friedman, Dan and Chen, Danqi},
   booktitle={North American Association for Computational Linguistics (NAACL)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022