The Codebase for Causal Distillation for Language Models.

Overview

Python 3.7 License CC BY-NC

Causal Distillation for Language Models

Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D. Goodman

The is an implementation of our preprint Causal Distillation for Language Models. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal computation process of the teacher through interchange intervention training (IIT).

We fork our main codebase from the Huggingface Distillation Interface.

Release Notes

12/02/2021 Our paper on Interchange Intervention Training (IIT) is released! Read this more formal definition of the method.
12/06/2021 Released the causal distillation codebase with the preprint.
12/06/2021 Released evaluation results on distilled tiny-BERT (3 layers) with the Wiki-Text 103M dataset.
⬜️ Released evaluation results on causal-distilled tiny-BERT (3 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released evaluation results on causal-distilled BERT (6 layers) with the Wiki-Text 103M + BookCorpus dataset.
⬜️ Released more ablation studies.
⬜️ Released causal-distilled tiny-BERT (3 layers) model files.
⬜️ Released causal-distilled BERT (6 layers) model files.

If you experience any issues or have suggestions, please contact me either thourgh the issues page or at [email protected].

Benchmark Results

Here are the results on the dev sets of GLUE:

Model Average-score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI
DistilBERT (3 layers) 67.81 22.8 71.6 78.2 82.1 84.3 55.4 86.5 56.7 24.2
CausalBERT (3 layers) 69.71 25.0 72.9 78.6 83.1 84.9 55.4 86.9 66.5 21.5

1 Average-score computed without WNLI.

Main Contents

Citation

If you use this repository, please cite the following two papers: paper for interchange intervention training, and paper for the our distillation method.

  @article{geiger-etal-2021-iit,
        title={Inducing Causal Structure for Interpretable Neural Networks}, 
        author={Geiger, Atticus and Wu, Zhengxuan and Lu, Hanson and Rozner, Josh and Kreiss, Elisa and Icard, Thomas and Goodman, Noah D. and Potts, Christopher},
        year={2021},
        eprint={2112.00826},
        archivePrefix={arXiv},
        primaryClass={cs.LG}
  }

  @article{wu-etal-2021-distill,
        title={Causal Distillation for Language Models}, 
        author={Wu, Zhengxuan and Geiger, Atticus and Rozner, Josh and Kreiss, Elisa and Lu, Hanson and Icard, Thomas and Potts, Christopher and Goodman, Noah D.},
        year={2021},
        eprint={2112.02505},
        archivePrefix={arXiv},
        primaryClass={cs.CL}
  }

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch Version: 1.9.0
  • Transfermers Version: 4.11.3
  • Datasets Version: Version: 1.8.0
  • We have performed experiments on Titan V GPU. We assume 12GB of GPU memory (more memory can expedite training).
  • Since we build our codebase off the Huggingface Distillation Interface, please review their doc for requirements.

Dataset

Following the Huggingface Distillation Interface, we need to pre-process the datasets before we do distillation. You can refer to their repo for details. We adapt their pre-processing scripts, and update with a few improvements. For example, we can now binarize datasets from the Dataset Hub from huggingface directly.

# preprocessing from disk
python script/binarized_data.py \
--file_path ../../bert-mid-tuning/data-files/wikitext-15M \
--split train \
--field_name text \
--max_parsing_example 1000 \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file ./data/binarized_text

# preprocessing from huggingface.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext-dataset/binarized_text \
--cache_dir ./distill_cache/

python scripts/binarized_data.py \
--dataset_name wikitext+bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/

# helper scripts to combine two binarized data files
python scripts/data_combinator.py \
--file_path_left ./bookcorpus-dataset/binarized_text.train.bert-base-uncased.pickle \
--file_path_right ./wikitext-dataset/binarized_text.train.bert-base-uncased.pickle \
--split train \
--tokenizer_name bert-base-uncased \
--dump_file wikitext+bookcorpus-dataset/binarized_text

# multiprocessing preprocessor.
python scripts/binarized_data.py \
--dataset_name bookcorpus \
--split train \
--field_name text \
--tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file bookcorpus-dataset/binarized_text \
--cache_dir ./distill_cache/ \
--fast_process \
--preprocessing_num_workers 48

After you get the datasets ready, you need to generate token counts as well.

python scripts/token_counts.py \
--data_file data/binarized_text.train.bert-base-uncased.pickle \
--token_counts_dump data/binarized_text.train.token_counts.bert-base-uncased.pickle \
--vocab_size 30522

Distillation

Before training, we recommand you to initialize your student model with weights extracted from the teacher model.

python scripts/extract_distilbert.py \
--model_type bert \
--model_name bert-base-uncased \
--dump_checkpoint ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--num_layers 3

Now, here is an example for you to distill with our causal distillation objective or without,

CUDA_VISIBLE_DEVICES=9,4 python causal_train.py \
--force \
--n_gpu 2 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.25 --alpha_mlm 0.25 --alpha_cos 0.25 --alpha_clm 0.0 --alpha_causal 0.25 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 50 \
--n_epoch 3 \
--batch_size 5

CUDA_VISIBLE_DEVICES=0,1,2,3 python causal_train.py \
--force \
--n_gpu 4 \
--is_wandb \
--log_interval 10 \
--student_type distilbert \
--student_config ./training_configs/distilbert-base-uncased-small.json \
--student_pretrained_weights ./distillation_checkpoints/bert-base-uncased_num_layer_3.pth \
--teacher_type bert \
--teacher_name bert-base-uncased \
--neuron_mapping ./training_configs/single_middle.nm \
--mlm --alpha_ce 0.33 --alpha_mlm 0.33 --alpha_cos 0.33 --alpha_clm 0.0 --alpha_causal 0.00 \
--freeze_pos_embs \
--dump_path ./results/ \
--data_file ./wikitext-15M/binarized_text.train.bert-base-uncased.pickle \
--token_counts ./wikitext-15M/binarized_text.train.token_counts.bert-base-uncased.pickle \
--seed 42 \
--gradient_accumulation_steps 124 \
--n_epoch 6 \
--batch_size 4

Note that you can simply turn our causal distillation objective on/off through setting the arguments.

Evaluation

After you get your distilled models, you need to fine-tune them and evaluate them with downstream tasks. We provide you all the scripts you need to run.

MLM Evaluation

CUDA_VISIBLE_DEVICES=5 python run_mlm.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-15M_seed_42_mlm_True_ce_0.25_mlm_0.25_cos_0.25_causal_0.25_nm_single_multilayer/ \
--dataset_dir ../../bert-mid-tuning/data-files/wikitext-15M/ \
--tokenizer_name bert-base-uncased \
--do_eval \
--output_dir /tmp/test-mlm \
--cache_dir ./distill_cache/

GLUE Evaluation

CUDA_VISIBLE_DEVICES=5,7,8,9 python run_glue.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle/ \
--tokenizer_name bert-base-uncased \
--task_name sst2 \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir ./results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

CoNLL Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_ner.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name conll2003 \
--do_train \
--do_eval \
--output_dir ./ner_results/ \
--save_total_limit 1 \
--cache_dir ./distill_cache/

SQuAD Evaluation

CUDA_VISIBLE_DEVICES=2,3,7,8 python run_qa.py \
--model_name_or_path ./results/s_distilbert_t_bert_data_wikitext-dataset_seed_42_mlm_True_ce_0.33_mlm_0.33_cos_0.33_causal_0.0_nm_single_middle_crossway_False/ \
--tokenizer_name bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--save_total_limit 1 \
--output_dir ./qa_results/
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023