Autoregressive Models in PyTorch.

Overview

Autoregressive

This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like autoregressive models.

For presentation purposes, the WaveNet-like models are applied to randomized Fourier series (1D) and MNIST (2D). In the figure below, two WaveNet-like models with different training settings make an n-step prediction on a periodic time-series from the validation dataset.

Advanced functions show how to generate MNIST images and how to estimate the MNIST digit class (progressively) p(y=class|x) from observed pixels using a conditional WaveNet p(x|y=class) and Bayes rule. Left: sampled MNIST digits, right: progressive class estimates as more pixels are observed.

Note, this library does not implement (Gated) PixelCNNs, but unrolls images for the purpose of processing in WaveNet architectures. This works surprisingly well.

Features

Currently the following features are implemented

  • WaveNet architecture and training as proposed in (oord2016wavenet)
  • Conditioning support (oord2016wavenet)
  • Fast generation based on (paine2016fast)
  • Fully differentiable n-step unrolling in training (heindl2021autoreg)
  • 2D image generation, completion, classification, and progressive classification support based on MNIST dataset
  • A randomized Fourier dataset

Presentation

A detailed presentation with theoretical background, architectural considerations and experiments can be found below.

The presentation source as well as all generated images are public domain. In case you find them useful, please leave a citation (see References below). All presentation sources can be found in etc/presentation. The presentation is written in markdown using Marp, graph diagrams are created using yEd.

If you spot errors or if case you have suggestions for improvements, please let me know by opening an issue.

Installation

To install run,

pip install https://github.com/cheind/autoregressive.git#egg=autoregressive[dev]

which requires Python 3.9 and a recent PyTorch > 1.9

Usage

The library comes with a set of pre-trained models in models/. The following commands use those models to make various predictions. Many listed commands come with additional parameters; use --help to get additional information.

1D Fourier series

Sample new signals from scratch

python -m autoregressive.scripts.wavenet_signals sample --config "models/fseries_q127/config.yaml" --ckpt "models/fseries_q127/xxxxxx.ckpt" --condition 4 --horizon 1000

The default models conditions on the periodicity of the signal. For the pre-trained model the value range is int: [0..4], corresponding to periods of 5-10secs.


Predict the shape of partially observable curves.

python -m autoregressive.scripts.wavenet_signals predict --config "models/fseries_q127/config.yaml" --ckpt "models/fseries_q127/xxxxxx.ckpt" --horizon 1500 --num_observed 50 --num_trajectories 20 --num_curves 1 --show_confidence true

2D MNIST

To sample from the class-conditional model

python -m autoregressive.scripts.wavenet_mnist sample --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt"

Generate images conditioned on the digit class and observed pixels.

python -m autoregressive.scripts.wavenet_mnist predict --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt" 

To perform classification

python -m autoregressive.scripts.wavenet_mnist classify --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt"

Train

To train / reproduce a model

python -m autoregressive.scripts.train fit --config "models/mnist_q2/config.yaml"

Progress is logged to Tensorboard

tensorboard --logdir lightning_logs

To generate a training configuration file for a specific dataset use

python -m autoregressive.scripts.train fit --data autoregressive.datasets.FSeriesDataModule --print_config > fseries_config.yaml

Test

To run the tests

pytest

References

@misc{heindl2021autoreg, 
  title={Autoregressive Models}, 
  journal={PROFACTOR Journal Club}, 
  author={Heindl, Christoph},
  year={2021},
  howpublished={\url{https://github.com/cheind/autoregressive}}
}

@article{oord2016wavenet,
  title={Wavenet: A generative model for raw audio},
  author={Oord, Aaron van den and Dieleman, Sander and Zen, Heiga and Simonyan, Karen and Vinyals, Oriol and Graves, Alex and Kalchbrenner, Nal and Senior, Andrew and Kavukcuoglu, Koray},
  journal={arXiv preprint arXiv:1609.03499},
  year={2016}
}

@article{paine2016fast,
  title={Fast wavenet generation algorithm},
  author={Paine, Tom Le and Khorrami, Pooya and Chang, Shiyu and Zhang, Yang and Ramachandran, Prajit and Hasegawa-Johnson, Mark A and Huang, Thomas S},
  journal={arXiv preprint arXiv:1611.09482},
  year={2016}
}

@article{oord2016conditional,
  title={Conditional image generation with pixelcnn decoders},
  author={Oord, Aaron van den and Kalchbrenner, Nal and Vinyals, Oriol and Espeholt, Lasse and Graves, Alex and Kavukcuoglu, Koray},
  journal={arXiv preprint arXiv:1606.05328},
  year={2016}
}
Owner
Christoph Heindl
I am a scientist at PROFACTOR/JKU working at the interface between computer vision, robotics and deep learning.
Christoph Heindl
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Facebook Research 605 Jan 02, 2023
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022