An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

Overview

MixHop and N-GCN

PWC Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019) and "A Higher-Order Graph Convolutional Layer" (NeurIPS 2018).


Abstract

Recent methods generalize convolutional layers from Euclidean domains to graph-structured data by approximating the eigenbasis of the graph Laplacian. The computationally-efficient and broadly-used Graph ConvNet of Kipf & Welling, over-simplifies the approximation, effectively rendering graph convolution as a neighborhood-averaging operator. This simplification restricts the model from learning delta operators, the very premise of the graph Laplacian. In this work, we propose a new Graph Convolutional layer which mixes multiple powers of the adjacency matrix, allowing it to learn delta operators. Our layer exhibits the same memory footprint and computational complexity as a GCN. We illustrate the strength of our proposed layer on both synthetic graph datasets, and on several real-world citation graphs, setting the record state-of-the-art on Pubmed.

This repository provides a PyTorch implementation of MixHop and N-GCN as described in the papers:

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. ICML, 2019. [Paper]

A Higher-Order Graph Convolutional Layer. Sami A Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Hrayr Harutyunyan. NeurIPS, 2018. [Paper]

The original TensorFlow implementation of MixHop is available [Here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-sparse      0.3.0

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training an N-GCN/MixHop model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/cora_edges.csv`.
  --features-path   STR    Features json.         Default is `input/cora_features.json`.
  --target-path     STR    Target classes csv.    Default is `input/cora_target.csv`.

Model options

  --model             STR     Model variant.                 Default is `mixhop`.               
  --seed              INT     Random seed.                   Default is 42.
  --epochs            INT     Number of training epochs.     Default is 2000.
  --early-stopping    INT     Early stopping rounds.         Default is 10.
  --training-size     INT     Training set size.             Default is 1500.
  --validation-size   INT     Validation set size.           Default is 500.
  --learning-rate     FLOAT   Adam learning rate.            Default is 0.01.
  --dropout           FLOAT   Dropout rate value.            Default is 0.5.
  --lambd             FLOAT   Regularization coefficient.    Default is 0.0005.
  --layers-1          LST     Layer sizes (upstream).        Default is [200, 200, 200]. 
  --layers-2          LST     Layer sizes (bottom).          Default is [200, 200, 200].
  --cut-off           FLOAT   Norm cut-off for pruning.      Default is 0.1.
  --budget            INT     Architecture neuron budget.    Default is 60.

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a MixHop model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with diffusion order 2:

$ python src/main.py --layers 64 64

Training an N-GCN model:

$ python src/main.py --model ngcn

License


Comments
  • FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    hello, when i run src/main.py,the error message appears: File "pandas_libs\parsers.pyx", line 361, in pandas._libs.parsers.TextReader.cinit File "pandas_libs\parsers.pyx", line 653, in pandas._libs.parsers.TextReader._setup_parser_source FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    do you know how to solve it?

    opened by tanjia123456 4
  • Citeseer and Pubmed Datasets

    Citeseer and Pubmed Datasets

    Hi Benedek,

    Thank you so much for the code. I want to run your code on Citeseer and Pubmed datasets. Would you mind providing Citeseer and Pubmed data in this format? By the way, after running MixHop model with default parameters I got the test accuracy 0.7867. Did the accuracy depend on the system that the code is running?

    Thanks in advance

    opened by bousejin 3
  • IndexError:

    IndexError:

    hello, when I run main.py, the error message occurs:

    File "D:\anaconda3.4\lib\site-packages\torch_sparse\spmm.py", line 30, in spmm out = matrix[col] IndexError: index 10241 is out of bounds for dimension 0 with size 10241

    the content of the spmm.py: `# import torch from torch_scatter import scatter_add

    def spmm(index, value, m, n, matrix): """Matrix product of sparse matrix with dense matrix. 稀疏矩阵与稠密矩阵的矩阵乘积

    Args:
        index (:class:`LongTensor`): The index tensor of sparse matrix.
        value (:class:`Tensor`): The value tensor of sparse matrix.
        m (int): The first dimension of corresponding dense matrix.
        n (int): The second dimension of corresponding dense matrix.
        matrix (:class:`Tensor`): The dense matrix.
      :rtype: :class:`Tensor`
    """
    
    assert n == matrix.size(0)
    
    row, col = index
    
    matrix = matrix if matrix.dim() > 1 else matrix.unsqueeze(-1)
    
    out = matrix[col]
    out = out * value.unsqueeze(-1)
    out = scatter_add(out, row, dim=0, dim_size=m)
    
    return out
    

    ` by the way, I use my own datasets, and the number of node is 10242. do you know how to solve it?

    opened by tanjia123456 2
  • some problem about codes

    some problem about codes

    When I run the code, some error occured as follows: MixHop-and-N-GCN-master\src\utils.py", line 45, in feature_reader out_features["indices"] = torch.LongTensor(np.concatenate([features.row.reshape(-1,1), features.col.reshape(-1,1)],axis=1).T) TypeError: can't convert np.ndarray of type numpy.int32. The only supported types are: float64, float32, float16, int64, int32, int16, int8, and uint8. I search it on the Internet and found that it seems to be a list of lists that are not of the same length. I was stuck in it and do not know how to correct it! Looking forward to your help!!Thanks!!

    opened by junkangwu 2
  • About

    About "torch_scatter"

    I cannot successfully install "torch_scatter". When I run the command line : pip3 install torch_scatter, an error always occurs, just like below. I tried to solve the problem, but I don't find the correct method. Could you help me? Thanks a lot!

    The error: ... cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1


    Failed building wheel for torch-scatter Running setup.py clean for torch-scatter Failed to build torch-scatter Installing collected packages: torch-scatter Running setup.py install for torch-scatter ... error Complete output from command /usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile: running install running build running build_py creating build creating build/lib.linux-x86_64-3.5 creating build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mul.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mean.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/sub.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/min.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/std.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/init.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/max.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/div.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/add.py -> build/lib.linux-x86_64-3.5/torch_scatter creating build/lib.linux-x86_64-3.5/test copying test/test_multi_gpu.py -> build/lib.linux-x86_64-3.5/test copying test/utils.py -> build/lib.linux-x86_64-3.5/test copying test/test_std.py -> build/lib.linux-x86_64-3.5/test copying test/init.py -> build/lib.linux-x86_64-3.5/test copying test/test_forward.py -> build/lib.linux-x86_64-3.5/test copying test/test_backward.py -> build/lib.linux-x86_64-3.5/test creating build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/ext.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/init.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/gen.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils running build_ext building 'torch_scatter.scatter_cpu' extension creating build/temp.linux-x86_64-3.5 creating build/temp.linux-x86_64-3.5/cpu x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/TH -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/THC -I/usr/include/python3.5m -c cpu/scatter.cpp -o build/temp.linux-x86_64-3.5/cpu/scatter.o -Wno-unused-variable -DTORCH_EXTENSION_NAME=scatter_cpu -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11 cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

    ----------------------------------------
    

    Command "/usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-ijd9s63n/torch-scatter/ You are using pip version 8.1.1, however version 19.1.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command.

    opened by zhangguanghui1 2
  • running error

    running error

    hello, when I run main.py, the error message occurs: File "/home/tj/anaconda3/lib/python3.6/site-packages/torch_sparse/init.py", line 22, in raise OSError(e) OSError: libcusparse.so.10.0: cannot open shared object file: No such file or directory

    my python version 3.6 cuda10.0 torch1.0.1 torch-sparse0.5.1 do you know how to solve it?

    opened by tanjia123456 1
  • Higher Powers Implementation

    Higher Powers Implementation

    image

    https://github.com/benedekrozemberczki/MixHop-and-N-GCN/blob/6e4ae00055fc1aecd972081ef9c152b0e9de37c1/src/layers.py#L54-L56

    To me it looks like this is implementing H(l+1) = σ(A^j * H(l) * W(l))

    image

    Can you explain where W_j and the concatenation are taking place?

    opened by datavistics 1
  • This paper was accepted in NeuralPS 2018?

    This paper was accepted in NeuralPS 2018?

    I didn't find this paper "A Higher-Order Graph Convolutional Layer" in NeuralPS 2018 accepted list. So I am not sure whether this paper has been accepted?

    opened by Jhy1993 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022