Pytorch version of SfmLearner from Tinghui Zhou et al.

Overview

SfMLearner Pytorch version

This codebase implements the system described in the paper:

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

In CVPR 2017 (Oral).

See the project webpage for more details.

Original Author : Tinghui Zhou ([email protected]) Pytorch implementation : Clément Pinard ([email protected])

sample_results

Preamble

This codebase was developed and tested with Pytorch 1.0.1, CUDA 10 and Ubuntu 16.04. Original code was developped in tensorflow, you can access it here

Prerequisite

pip3 install -r requirements.txt

or install manually the following packages :

pytorch >= 1.0.1
pebble
matplotlib
imageio
scipy
argparse
tensorboardX
blessings
progressbar2
path.py

Note

Because it uses latests pytorch features, it is not compatible with anterior versions of pytorch.

If you don't have an up to date pytorch, the tags can help you checkout the right commits corresponding to your pytorch version.

What has been done

  • Training has been tested on KITTI and CityScapes.
  • Dataset preparation has been largely improved, and now stores image sequences in folders, making sure that movement is each time big enough between each frame
  • That way, training is now significantly faster, running at ~0.14sec per step vs ~0.2s per steps initially (on a single GTX980Ti)
  • In addition you don't need to prepare data for a particular sequence length anymore as stacking is made on the fly.
  • You can still choose the former stacked frames dataset format.
  • Convergence is now almost as good as original paper with same hyper parameters
  • You can know compare with groud truth for your validation set. It is still possible to validate without, but you now can see that minimizing photometric error is not equivalent to optimizing depth map.

Differences with official Implementation

  • Smooth Loss is different from official repo. Instead of applying it to disparity, we apply it to depth. Original disparity smooth loss did not work well (don't know why !) and it did not even converge at all with weight values used (0.5).
  • loss is divided by 2.3 when downscaling instead of 2. This is the results of empiric experiments, so the optimal value is clearly not carefully determined.
  • As a consequence, with a smooth loss of 2.0̀, depth test is better, but Pose test is worse. To revert smooth loss back to original, you can change it here

Preparing training data

Preparation is roughly the same command as in the original code.

For KITTI, first download the dataset using this script provided on the official website, and then run the following command. The --with-depth option will save resized copies of groundtruth to help you setting hyper parameters. The --with-pose will dump the sequence pose in the same format as Odometry dataset (see pose evaluation)

python3 data/prepare_train_data.py /path/to/raw/kitti/dataset/ --dataset-format 'kitti' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 128 --num-threads 4 [--static-frames /path/to/static_frames.txt] [--with-depth] [--with-pose]

For Cityscapes, download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip, 2) camera_trainvaltest.zip. You will probably need to contact the administrators to be able to get it. Then run the following command

python3 data/prepare_train_data.py /path/to/cityscapes/dataset/ --dataset-format 'cityscapes' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 171 --num-threads 4

Notice that for Cityscapes the img_height is set to 171 because we crop out the bottom part of the image that contains the car logo, and the resulting image will have height 128.

Training

Once the data are formatted following the above instructions, you should be able to train the model by running the following command

python3 train.py /path/to/the/formatted/data/ -b4 -m0.2 -s0.1 --epoch-size 3000 --sequence-length 3 --log-output [--with-gt]

You can then start a tensorboard session in this folder by

tensorboard --logdir=checkpoints/

and visualize the training progress by opening https://localhost:6006 on your browser. If everything is set up properly, you should start seeing reasonable depth prediction after ~30K iterations when training on KITTI.

Evaluation

Disparity map generation can be done with run_inference.py

python3 run_inference.py --pretrained /path/to/dispnet --dataset-dir /path/pictures/dir --output-dir /path/to/output/dir

Will run inference on all pictures inside dataset-dir and save a jpg of disparity (or depth) to output-dir for each one see script help (-h) for more options.

Disparity evaluation is avalaible

python3 test_disp.py --pretrained-dispnet /path/to/dispnet --pretrained-posenet /path/to/posenet --dataset-dir /path/to/KITTI_raw --dataset-list /path/to/test_files_list

Test file list is available in kitti eval folder. To get fair comparison with Original paper evaluation code, don't specify a posenet. However, if you do, it will be used to solve the scale factor ambiguity, the only ground truth used to get it will be vehicle speed which is far more acceptable for real conditions quality measurement, but you will obviously get worse results.

Pose evaluation is also available on Odometry dataset. Be sure to download both color images and pose !

python3 test_pose.py /path/to/posenet --dataset-dir /path/to/KITIT_odometry --sequences [09]

ATE (Absolute Trajectory Error) is computed as long as RE for rotation (Rotation Error). RE between R1 and R2 is defined as the angle of R1*R2^-1 when converted to axis/angle. It corresponds to RE = arccos( (trace(R1 @ R2^-1) - 1) / 2). While ATE is often said to be enough to trajectory estimation, RE seems important here as sequences are only seq_length frames long.

Pretrained Nets

Avalaible here

Arguments used :

python3 train.py /path/to/the/formatted/data/ -b4 -m0 -s2.0 --epoch-size 1000 --sequence-length 5 --log-output --with-gt

Depth Results

Abs Rel Sq Rel RMSE RMSE(log) Acc.1 Acc.2 Acc.3
0.181 1.341 6.236 0.262 0.733 0.901 0.964

Pose Results

5-frames snippets used

Seq. 09 Seq. 10
ATE 0.0179 (std. 0.0110) 0.0141 (std. 0.0115)
RE 0.0018 (std. 0.0009) 0.0018 (std. 0.0011)

Discussion

Here I try to link the issues that I think raised interesting questions about scale factor, pose inference, and training hyperparameters

  • Issue 48 : Why is target frame at the center of the sequence ?
  • Issue 39 : Getting pose vector without the scale factor uncertainty
  • Issue 46 : Is Interpolated groundtruth better than sparse groundtruth ?
  • Issue 45 : How come the inverse warp is absolute and pose and depth are only relative ?
  • Issue 32 : Discussion about validation set, and optimal batch size
  • Issue 25 : Why filter out static frames ?
  • Issue 24 : Filtering pixels out of the photometric loss
  • Issue 60 : Inverse warp is only one way !

Other Implementations

TensorFlow by tinghuiz (original code, and paper author)

Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022