[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

Overview

K-Net: Towards Unified Image Segmentation

PWC

Introduction

This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will also be integrated in the future release of MMDetection and MMSegmentation.

K-Net:Towards Unified Image Segmentation,
Wenwei Zhang, Jiangmiao Pang, Kai Chen, Chen Change Loy
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021
[arXiv][project page][Bibetex]

Results

The results of K-Net and their corresponding configs on each segmentation task are shown as below. We have released the full model zoo of panoptic segmentation. The complete model checkpoints and logs for instance and semantic segmentation will be released soon.

Semantic Segmentation on ADE20K

Backbone Method Crop Size Lr Schd mIoU Config Download
R-50 K-Net + FCN 512x512 80K 43.3 config model | log
R-50 K-Net + PSPNet 512x512 80K 43.9 config model | log
R-50 K-Net + DeepLabv3 512x512 80K 44.6 config model | log
R-50 K-Net + UPerNet 512x512 80K 43.6 config model | log
Swin-T K-Net + UPerNet 512x512 80K 45.4 config model | log
Swin-L K-Net + UPerNet 512x512 80K 52.0 config model | log
Swin-L K-Net + UPerNet 640x640 80K 52.7 config model | log

Instance Segmentation on COCO

Backbone Method Lr Schd Mask mAP Config Download
R-50 K-Net 1x 34.0 config model | log
R-50 K-Net ms-3x 37.8 config model | log
R-101 K-Net ms-3x 39.2 config model | log
R-101-DCN K-Net ms-3x 40.5 config model | log

Panoptic Segmentation on COCO

Backbone Method Lr Schd PQ Config Download
R-50 K-Net 1x 44.3 config model | log
R-50 K-Net ms-3x 47.1 config model | log
R-101 K-Net ms-3x 48.4 config model | log
R-101-DCN K-Net ms-3x 49.6 config model | log
Swin-L (window size 7) K-Net ms-3x 54.6 config model | log
Above on test-dev 55.2

Installation

It requires the following OpenMMLab packages:

  • MIM >= 0.1.5
  • MMCV-full >= v1.3.14
  • MMDetection >= v2.17.0
  • MMSegmentation >= v0.18.0
  • scipy
  • panopticapi
pip install openmim scipy mmdet mmsegmentation
pip install git+https://github.com/cocodataset/panopticapi.git
mim install mmcv-full

License

This project is released under the Apache 2.0 license.

Usage

Data preparation

Prepare data following MMDetection and MMSegmentation. The data structure looks like below:

data/
├── ade
│   ├── ADEChallengeData2016
│   │   ├── annotations
│   │   ├── images
├── coco
│   ├── annotations
│   │   ├── panoptic_{train,val}2017.json
│   │   ├── instance_{train,val}2017.json
│   │   ├── panoptic_{train,val}2017/  # panoptic png annotations
│   │   ├── image_info_test-dev2017.json  # for test-dev submissions
│   ├── train2017
│   ├── val2017
│   ├── test2017

Training and testing

For training and testing, you can directly use mim to train and test the model

# train instance/panoptic segmentation models
sh ./tools/mim_slurm_train.sh $PARTITION mmdet $CONFIG $WORK_DIR

# test instance segmentation models
sh ./tools/mim_slurm_test.sh $PARTITION mmdet $CONFIG $CHECKPOINT --eval segm

# test panoptic segmentation models
sh ./tools/mim_slurm_test.sh $PARTITION mmdet $CONFIG $CHECKPOINT --eval pq

# train semantic segmentation models
sh ./tools/mim_slurm_train.sh $PARTITION mmseg $CONFIG $WORK_DIR

# test semantic segmentation models
sh ./tools/mim_slurm_test.sh $PARTITION mmseg $CONFIG $CHECKPOINT --eval mIoU

For test submission for panoptic segmentation, you can use the command below:

# we should update the category information in the original image test-dev pkl file
# for panoptic segmentation
python -u tools/gen_panoptic_test_info.py
# run test-dev submission
sh ./tools/mim_slurm_test.sh $PARTITION mmdet $CONFIG $CHECKPOINT  --format-only --cfg-options data.test.ann_file=data/coco/annotations/panoptic_image_info_test-dev2017.json data.test.img_prefix=data/coco/test2017 --eval-options jsonfile_prefix=$WORK_DIR

You can also run training and testing without slurm by directly using mim for instance/semantic/panoptic segmentation like below:

PYTHONPATH='.':$PYTHONPATH mim train mmdet $CONFIG $WORK_DIR
PYTHONPATH='.':$PYTHONPATH mim train mmseg $CONFIG $WORK_DIR
  • PARTITION: the slurm partition you are using
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CONFIG: the config files under the directory configs/
  • JOB_NAME: the name of the job that are necessary for slurm

Citation

@inproceedings{zhang2021knet,
    title={{K-Net: Towards} Unified Image Segmentation},
    author={Wenwei Zhang and Jiangmiao Pang and Kai Chen and Chen Change Loy},
    year={2021},
    booktitle={NeurIPS},
}
Owner
Wenwei Zhang
Wenwei Zhang
Wenwei Zhang
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022