DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Overview

Vehicle Indicator Toolset

Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages.

Tracking of vehicles
The tracking of the vehicles with a track ID can be seen below.

|


Detection of the lanes.
Whenever the driver gets out of the lane, he will be displayed a warning to stay inside the lane.

|


Tail light detection
Detect all the tail lights of the vehicles applying brakes at night.

|


Traffic signal recognition
Warning is shown when to stop and resume again using traffic lights.

|



Vehicle collision estimation
Incase, a collision is estimated, driver is warned.

|



Pedestrian stepping
Whenever, pedestrian comes in our view, a warning is displayed.

|


Dependencies required:

  • Python 3.0
  • TensorFlow 2.0
  • openCV

Project Structure:

  • lanes:This folder contains files related to lane detection only.
  • tf-color: This folder contains files related to traffic light detection and detect the colour and accordingly give instructions to the driver.
  • tracked: This folder contains detection and tracking algorithm for the vehicles.
  • untracked: Detection and visualization only
  • utils: contains various functions that are used continuously again and again for different frames.
  • estimations: Detect pedestrians and vehicles too close to us that may cause collision.
  • cropping: Cropping frames using drag and drop or clicking points.
  • display: All the gifs shown above are stored here.

Requisities:

Download the tensorflow model from here.

  • Provide the path to the labels txt file using variable named PATH_TO_LABELS.
  • Provide the path to the tensorflow model using variable named model_name.
  • Make sure all the files are imported properly from the utils folder. If you get an error, add the location of the utils folder using sys module.
  • Tensorflow version 2.0 is must or else you may come across various error.

Working:

Run python integrate3.py or python intyolo.py after following the above mentioned requisities.
Now select the dash area for the car by clicking on multiple points as shown below. This is done to
remove detection of our own vehicle in some cases which may generate false results.

In the second step, select the area where searching of the lanes should be made. This may differ due to
the placement of dash-cams in the vehicle. The area above the horizon where road ends should not be selected.

Now, you can visualize the working and see the warnings/suggestions displayed to the driver.
All the works that are implemented individually are present in their respective folders, which are integrated together.
Old models may have some bugs now, as many files inside utils are changed.
Visit honors branch of models repository forked from tf/models to see more work on this project,
that I have done in google colab.

Drawbacks:

  • At night, searching for tail light should be made in the dark. If sufficient light is present, false cases can get introduced.
  • Tracking works good for bigger objects, while smaller may loose their track ID at places.
  • Threshold values used in lane detection needs to be altered depending on the roads and the quality of the videos.
  • Object detection needs to work properly for better results throughout. The model with higher accuracy should be downloaded from the link given above.
Owner
Alex Xu
Alex Xu
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022