EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

Overview

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

This repo contains the official Pytorch implementaion code and configuration files of EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network. created by Hu Zhang.

Installation

Requirements

  • Python 3.6+
  • PyTorch 1.0+

Our environments

  • OS: Ubuntu 18.04
  • CUDA: 10.0
  • Toolkit: PyTorch 1.0
  • GPU: Titan RTX

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Usage

First, clone the repository locally:

git clone https://github.com/murufeng/EPSANet.git
cd EPSANet
  • Create a conda virtual environment and activate it:
conda create -n epsanet python=3.6 
conda activate epsanet
conda install -c pytorch pytorch torchvision

Training

To train models on ImageNet with 8 gpus run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py -a epsanet50 --data /path/to/imagenet 

Model Zoo

Models are trained with 8 GPUs on both ImageNet and MS-COCO 2017 dataset.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%)
EPSANet-50(Small) 22.56 3.62 77.49 93.54
EPSANet-50(Large) 27.90 4.72 78.64 94.18
EPSANet-101(Small) 38.90 6.82 78.43 94.11
EPSANet-101(Large) 49.59 8.97 79.38 94.58

Object Detection on MS-COCO 2017

Faster R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 38.56 197.07 39.2 60.3 42.3
EPSANet-50(large) pytorch 1x 43.85 219.64 40.9 62.1 44.6

Mask R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 41.20 248.53 40.0 60.9 43.3
EPSANet-50(large) pytorch 1x 46.50 271.10 41.4 62.3 45.3

RetinaNet

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 34.78 229.32 38.2 58.1 40.6
EPSANet-50(large) pytorch 1x 40.07 251.89 39.6 59.4 42.3

Instance segmentation with Mask R-CNN on MS-COCO 2017

model Params(M) FLOPs(G) AP AP_50 AP_75
EPSANet-50(small) 41.20 248.53 35.9 57.7 38.1
EPSANet-50(Large) 46.50 271.10 37.1 59.0 39.5

Citing EPSANet

You can cite the paper as:

@article{hu2021epsanet,
  title={EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network},
  author={Hu Zhang and Keke Zu and Jian Lu and Yuru Zou and Deyu Meng},
  journal={arXiv preprint arXiv:2105.14447},
  year={2021}
}
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022