Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Overview

Neural Descriptor Fields (NDF)

PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and using these descriptor fields to mimic demonstrations of a pick-and-place task on a robotic system

drawing


This is the reference implementation for our paper:

Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation

drawing drawing

PDF | Video

Anthony Simeonov*, Yilun Du*, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal**, Vincent Sitzmann** (*Equal contribution, order determined by coin flip. **Equal advising)


Google Colab

If you want a quickstart demo of NDF without installing anything locally, we have written a Colab. It runs the same demo as the Quickstart Demo section below where a local coordinate frame near one object is sampled, and the corresponding local frame near a new object (with a different shape and pose) is recovered via our energy optimization procedure.


Setup

Clone this repo

git clone --recursive https://github.com/anthonysimeonov/ndf_robot.git
cd ndf_robot

Install dependencies (using a virtual environment is highly recommended):

pip install -e .

Setup additional tools (Franka Panda inverse kinematics -- unnecessary if not using simulated robot for evaluation):

cd pybullet-planning/pybullet_tools/ikfast/franka_panda
python setup.py

Setup environment variables (this script must be sourced in each new terminal where code from this repository is run)

source ndf_env.sh

Quickstart Demo

Download pretrained weights

./scripts/download_demo_weights.sh

Download data assets

./scripts/download_demo_data.sh

Run example script

cd src/ndf_robot/eval
python ndf_demo.py

The code in the NDFAlignmentCheck class in the file src/ndf_robot/eval/ndf_alignment.py contains a minimal implementation of our SE(3)-pose energy optimization procedure. This is what is used in the Quickstart demo above. For a similar implementation that is integrated with our pick-and-place from demonstrations pipeline, see src/ndf_robot/opt/optimizer.py

Training

Download all data assets

If you want the full dataset (~150GB for 3 object classes):

./scripts/download_training_data.sh 

If you want just the mug dataset (~50 GB -- other object class data can be downloaded with the according scripts):

./scripts/download_mug_training_data.sh 

If you want to recreate your own dataset, see Data Generation section

Run training

cd src/ndf_robot/training
python train_vnn_occupancy_net.py --obj_class all --experiment_name  ndf_training_exp

More information on training here

Evaluation with simulated robot

Make sure you have set up the additional inverse kinematics tools (see Setup section)

Download all the object data assets

./scripts/download_obj_data.sh

Download pretrained weights

./scripts/download_demo_weights.sh

Download demonstrations

./scripts/download_demo_demonstrations.sh

Run evaluation

If you are running this command on a remote machine, be sure to remove the --pybullet_viz flag!

cd src/ndf_robot/eval
CUDA_VISIBLE_DEVICES=0 python evaluate_ndf.py \
        --demo_exp grasp_rim_hang_handle_gaussian_precise_w_shelf \
        --object_class mug \
        --opt_iterations 500 \
        --only_test_ids \
        --rand_mesh_scale \
        --model_path multi_category_weights \
        --save_vis_per_model \
        --config eval_mug_gen \
        --exp test_mug_eval \
        --pybullet_viz

More information on experimental evaluation can be found here.

Data Generation

Download all the object data assets

./scripts/download_obj_data.sh

Run data generation

cd src/ndf_robot/data_gen
python shapenet_pcd_gen.py \
    --total_samples 100 \
    --object_class mug \
    --save_dir test_mug \
    --rand_scale \
    --num_workers 2

More information on dataset generation can be found here.

Collect new demonstrations with teleoperated robot in PyBullet

Make sure you have downloaded all the object data assets (see Data Generation section)

Run teleoperation pipeline

cd src/ndf_robot/demonstrations
python label_demos.py --exp test_bottle --object_class bottle --with_shelf

More information on collecting robot demonstrations can be found here.

Citing

If you find our paper or this code useful in your work, please cite our paper:

@article{simeonovdu2021ndf,
  title={Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation},
  author={Simeonov, Anthony and Du, Yilun and Tagliasacchi, Andrea and Tenenbaum, Joshua B. and Rodriguez, Alberto and Agrawal, Pulkit and Sitzmann, Vincent},
  journal={arXiv preprint arXiv:2112.05124},
  year={2021}
}

Acknowledgements

Parts of this code were built upon the implementations found in the occupancy networks repo and the vector neurons repo. Check out their projects as well!

Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022