Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Overview

Neural Descriptor Fields (NDF)

PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and using these descriptor fields to mimic demonstrations of a pick-and-place task on a robotic system

drawing


This is the reference implementation for our paper:

Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation

drawing drawing

PDF | Video

Anthony Simeonov*, Yilun Du*, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal**, Vincent Sitzmann** (*Equal contribution, order determined by coin flip. **Equal advising)


Google Colab

If you want a quickstart demo of NDF without installing anything locally, we have written a Colab. It runs the same demo as the Quickstart Demo section below where a local coordinate frame near one object is sampled, and the corresponding local frame near a new object (with a different shape and pose) is recovered via our energy optimization procedure.


Setup

Clone this repo

git clone --recursive https://github.com/anthonysimeonov/ndf_robot.git
cd ndf_robot

Install dependencies (using a virtual environment is highly recommended):

pip install -e .

Setup additional tools (Franka Panda inverse kinematics -- unnecessary if not using simulated robot for evaluation):

cd pybullet-planning/pybullet_tools/ikfast/franka_panda
python setup.py

Setup environment variables (this script must be sourced in each new terminal where code from this repository is run)

source ndf_env.sh

Quickstart Demo

Download pretrained weights

./scripts/download_demo_weights.sh

Download data assets

./scripts/download_demo_data.sh

Run example script

cd src/ndf_robot/eval
python ndf_demo.py

The code in the NDFAlignmentCheck class in the file src/ndf_robot/eval/ndf_alignment.py contains a minimal implementation of our SE(3)-pose energy optimization procedure. This is what is used in the Quickstart demo above. For a similar implementation that is integrated with our pick-and-place from demonstrations pipeline, see src/ndf_robot/opt/optimizer.py

Training

Download all data assets

If you want the full dataset (~150GB for 3 object classes):

./scripts/download_training_data.sh 

If you want just the mug dataset (~50 GB -- other object class data can be downloaded with the according scripts):

./scripts/download_mug_training_data.sh 

If you want to recreate your own dataset, see Data Generation section

Run training

cd src/ndf_robot/training
python train_vnn_occupancy_net.py --obj_class all --experiment_name  ndf_training_exp

More information on training here

Evaluation with simulated robot

Make sure you have set up the additional inverse kinematics tools (see Setup section)

Download all the object data assets

./scripts/download_obj_data.sh

Download pretrained weights

./scripts/download_demo_weights.sh

Download demonstrations

./scripts/download_demo_demonstrations.sh

Run evaluation

If you are running this command on a remote machine, be sure to remove the --pybullet_viz flag!

cd src/ndf_robot/eval
CUDA_VISIBLE_DEVICES=0 python evaluate_ndf.py \
        --demo_exp grasp_rim_hang_handle_gaussian_precise_w_shelf \
        --object_class mug \
        --opt_iterations 500 \
        --only_test_ids \
        --rand_mesh_scale \
        --model_path multi_category_weights \
        --save_vis_per_model \
        --config eval_mug_gen \
        --exp test_mug_eval \
        --pybullet_viz

More information on experimental evaluation can be found here.

Data Generation

Download all the object data assets

./scripts/download_obj_data.sh

Run data generation

cd src/ndf_robot/data_gen
python shapenet_pcd_gen.py \
    --total_samples 100 \
    --object_class mug \
    --save_dir test_mug \
    --rand_scale \
    --num_workers 2

More information on dataset generation can be found here.

Collect new demonstrations with teleoperated robot in PyBullet

Make sure you have downloaded all the object data assets (see Data Generation section)

Run teleoperation pipeline

cd src/ndf_robot/demonstrations
python label_demos.py --exp test_bottle --object_class bottle --with_shelf

More information on collecting robot demonstrations can be found here.

Citing

If you find our paper or this code useful in your work, please cite our paper:

@article{simeonovdu2021ndf,
  title={Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation},
  author={Simeonov, Anthony and Du, Yilun and Tagliasacchi, Andrea and Tenenbaum, Joshua B. and Rodriguez, Alberto and Agrawal, Pulkit and Sitzmann, Vincent},
  journal={arXiv preprint arXiv:2112.05124},
  year={2021}
}

Acknowledgements

Parts of this code were built upon the implementations found in the occupancy networks repo and the vector neurons repo. Check out their projects as well!

Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022