Image Recognition using Pytorch

Overview

PyTorch Project Template

A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in pytorch projects here's a pytorch project template that combines simplicity, best practice for folder structure and good OOP design. The main idea is that there's much same stuff you do every time when you start your pytorch project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new pytorch project.

So, here’s a simple pytorch template that help you get into your main project faster and just focus on your core (Model Architecture, Training Flow, etc)

In order to decrease repeated stuff, we recommend to use a high-level library. You can write your own high-level library or you can just use some third-part libraries such as ignite, fastai, mmcv … etc. This can help you write compact but full-featured training loops in a few lines of code. Here we use ignite to train mnist as an example.

Requirements

  • yacs (Yet Another Configuration System)
  • PyTorch (An open source deep learning platform)
  • ignite (High-level library to help with training neural networks in PyTorch)

Table Of Contents

In a Nutshell

In a nutshell here's how to use this template, so for example assume you want to implement ResNet-18 to train mnist, so you should do the following:

  • In modeling folder create a python file named whatever you like, here we named it example_model.py . In modeling/__init__.py file, you can build a function named build_model to call your model
from .example_model import ResNet18

def build_model(cfg):
    model = ResNet18(cfg.MODEL.NUM_CLASSES)
    return model
  • In engine folder create a model trainer function and inference function. In trainer function, you need to write the logic of the training process, you can use some third-party library to decrease the repeated stuff.
# trainer
def do_train(cfg, model, train_loader, val_loader, optimizer, scheduler, loss_fn):
 """
 implement the logic of epoch:
 -loop on the number of iterations in the config and call the train step
 -add any summaries you want using the summary
 """
pass

# inference
def inference(cfg, model, val_loader):
"""
implement the logic of the train step
- run the tensorflow session
- return any metrics you need to summarize
 """
pass
  • In tools folder, you create the train.py . In this file, you need to get the instances of the following objects "Model", "DataLoader”, “Optimizer”, and config
# create instance of the model you want
model = build_model(cfg)

# create your data generator
train_loader = make_data_loader(cfg, is_train=True)
val_loader = make_data_loader(cfg, is_train=False)

# create your model optimizer
optimizer = make_optimizer(cfg, model)
  • Pass the all these objects to the function do_train , and start your training
# here you train your model
do_train(cfg, model, train_loader, val_loader, optimizer, None, F.cross_entropy)

You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

In Details

├──  config
│    └── defaults.py  - here's the default config file.
│
│
├──  configs  
│    └── train_mnist_softmax.yml  - here's the specific config file for specific model or dataset.
│ 
│
├──  data  
│    └── datasets  - here's the datasets folder that is responsible for all data handling.
│    └── transforms  - here's the data preprocess folder that is responsible for all data augmentation.
│    └── build.py  		   - here's the file to make dataloader.
│    └── collate_batch.py   - here's the file that is responsible for merges a list of samples to form a mini-batch.
│
│
├──  engine
│   ├── trainer.py     - this file contains the train loops.
│   └── inference.py   - this file contains the inference process.
│
│
├── layers              - this folder contains any customed layers of your project.
│   └── conv_layer.py
│
│
├── modeling            - this folder contains any model of your project.
│   └── example_model.py
│
│
├── solver             - this folder contains optimizer of your project.
│   └── build.py
│   └── lr_scheduler.py
│   
│ 
├──  tools                - here's the train/test model of your project.
│    └── train_net.py  - here's an example of train model that is responsible for the whole pipeline.
│ 
│ 
└── utils
│    ├── logger.py
│    └── any_other_utils_you_need
│ 
│ 
└── tests					- this foler contains unit test of your project.
     ├── test_data_sampler.py

Future Work

Contributing

Any kind of enhancement or contribution is welcomed.

Acknowledgments

Owner
Sarat Chinni
Machine learning Engineer
Sarat Chinni
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022