SWA Object Detection

Overview

SWA Object Detection

This project hosts the scripts for training SWA object detectors, as presented in our paper:

@article{zhang2020swa,
  title={SWA Object Detection},
  author={Zhang, Haoyang and Wang, Ying and Dayoub, Feras and S{\"u}nderhauf, Niko},
  journal={arXiv preprint arXiv:2012.12645},
  year={2020}
}

The full paper is available at: https://arxiv.org/abs/2012.12645.

Introduction

Do you want to improve 1.0 AP for your object detector without any inference cost and any change to your detector? Let us tell you such a recipe. It is surprisingly simple: train your detector for an extra 12 epochs using cyclical learning rates and then average these 12 checkpoints as your final detection model. This potent recipe is inspired by Stochastic Weights Averaging (SWA), which is proposed in [1] for improving generalization in deep neural networks. We found it also very effective in object detection. In this work, we systematically investigate the effects of applying SWA to object detection as well as instance segmentation. Through extensive experiments, we discover a good policy of performing SWA in object detection, and we consistently achieve ~1.0 AP improvement over various popular detectors on the challenging COCO benchmark. We hope this work will make more researchers in object detection know this technique and help them train better object detectors.

SWA Object Detection: averaging multiple detection models leads to a better one.

Updates

  • 2020.01.08 Reimplement the code and now it is more convenient, more flexible and easier to perform both the conventional training and SWA training. See Instructions.
  • 2020.01.07 Update to MMDetection v2.8.0.
  • 2020.12.24 Release the code.

Installation

  • This project is based on MMDetection. Therefore the installation is the same as original MMDetection.

  • Please check get_started.md for installation. Note that you should change the version of PyTorch and CUDA to yours when installing mmcv in step 3 and clone this repo instead of MMdetection in step 4.

  • If you run into problems with pycocotools, please install it by:

    pip install "git+https://github.com/open-mmlab/cocoapi.git#subdirectory=pycocotools"
    

Usage of MMDetection

MMDetection provides colab tutorial, and full guidance for quick run with existing dataset and with new dataset for beginners. There are also tutorials for finetuning models, adding new dataset, designing data pipeline, customizing models, customizing runtime settings and useful tools.

Please refer to FAQ for frequently asked questions.

Instructions

We add a SWA training phase to the object detector training process, implement a SWA hook that helps process averaged models, and write a SWA config for conveniently deploying SWA training in training various detectors. We also provide many config files for reproducing the results in the paper.

By including the SWA config in detector config files and setting related parameters, you can have different SWA training modes.

  1. Two-pahse mode. In this mode, the training will begin with the traditional training phase, and it continues for epochs. After that, SWA training will start, with loading the best model on the validation from the previous training phase (becasue swa_load_from = 'best_bbox_mAP.pth'in the SWA config).

    As shown in swa_vfnet_r50 config, the SWA config is included at line 4 and only the SWA optimizer is reset at line 118 in this script. Note that configuring parameters in local scripts will overwrite those values inherited from the SWA config.

    You can change those parameters that are included in the SWA config to use different optimizers or different learning rate schedules for the SWA training. For example, to use a different initial learning rate, say 0.02, you just need to set swa_optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) in the SWA config (global effect) or in the swa_vfnet_r50 config (local effect).

    To start the training, run:

    ./tools/dist_train.sh configs/swa/swa_vfnet_r50_fpn_1x_coco.py 8
    
    
  2. Only-SWA mode. In this mode, the traditional training is skipped and only the SWA training is performed. In general, this mode should work with a pre-trained detection model which you can download from the MMDetection model zoo.

    Have a look at the swa_mask_rcnn_r101 config. By setting only_swa_training = True and swa_load_from = mask_rcnn_pretraind_model, this script conducts only SWA training, starting from a pre-trained detection model. To start the training, run:

    ./tools/dist_train.sh configs/swa/swa_mask_rcnn_r101_fpn_2x_coco.py 8
    
    

In both modes, we have implemented the validation stage and saving functions for the SWA model. Thus, it would be easy to monitor the performance and select the best SWA model.

Results and Models

For your convenience, we provide the following SWA models. These models are obtained by averaging checkpoints that are trained with cyclical learning rates for 12 epochs.

Model bbox AP (val) segm AP (val)     Download    
SWA-MaskRCNN-R50-1x-0.02-0.0002-38.2-34.7 39.1, +0.9 35.5, +0.8 model | config
SWA-MaskRCNN-R101-1x-0.02-0.0002-40.0-36.1 41.0, +1.0 37.0, +0.9 model | config
SWA-MaskRCNN-R101-2x-0.02-0.0002-40.8-36.6 41.7, +0.9 37.4, +0.8 model | config
SWA-FasterRCNN-R50-1x-0.02-0.0002-37.4 38.4, +1.0 - model | config
SWA-FasterRCNN-R101-1x-0.02-0.0002-39.4 40.3, +0.9 - model | config
SWA-FasterRCNN-R101-2x-0.02-0.0002-39.8 40.7, +0.9 - model | config
SWA-RetinaNet-R50-1x-0.01-0.0001-36.5 37.8, +1.3 - model | config
SWA-RetinaNet-R101-1x-0.01-0.0001-38.5 39.7, +1.2 - model | config
SWA-RetinaNet-R101-2x-0.01-0.0001-38.9 40.0, +1.1 - model | config
SWA-FCOS-R50-1x-0.01-0.0001-36.6 38.0, +1.4 - model | config
SWA-FCOS-R101-1x-0.01-0.0001-39.2 40.3, +1.1 - model | config
SWA-FCOS-R101-2x-0.01-0.0001-39.1 40.2, +1.1 - model | config
SWA-YOLOv3(320)-D53-273e-0.001-0.00001-27.9 28.7, +0.8 - model | config
SWA-YOLOv3(680)-D53-273e-0.001-0.00001-33.4 34.2, +0.8 - model | config
SWA-VFNet-R50-1x-0.01-0.0001-41.6 42.8, +1.2 - model | config
SWA-VFNet-R101-1x-0.01-0.0001-43.0 44.3, +1.3 - model | config
SWA-VFNet-R101-2x-0.01-0.0001-43.5 44.5, +1.0 - model | config

Notes:

  • SWA-MaskRCNN-R50-1x-0.02-0.0002-38.2-34.7 means this SWA model is produced based on the pre-trained Mask RCNN model that has a ResNet50 backbone, is trained under 1x schedule with the initial learning rate 0.02 and ending learning rate 0.0002, and achieves 38.2 bbox AP and 34.7 mask AP on the COCO val2017 respectively. This SWA model acheives 39.1 bbox AP and 35.5 mask AP, which are higher than the pre-trained model by 0.9 bbox AP and 0.8 mask AP respectively. This rule applies to other object detectors.

  • In addition to these baseline detectors, SWA can also improve more powerful detectors. One example is VFNetX whose performance on the COCO val2017 is improved from 52.2 AP to 53.4 AP (+1.2 AP).

  • More detailed results including AP50 and AP75 can be found here.

Contributing

Any pull requests or issues are welcome.

Citation

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows:

@article{zhang2020swa,
  title={SWA Object Detection},
  author={Zhang, Haoyang and Wang, Ying and Dayoub, Feras and S{\"u}nderhauf, Niko},
  journal={arXiv preprint arXiv:2012.12645},
  year={2020}
}

Acknowledgment

Many thanks to Dr Marlies Hankel and MASSIVE HPC for supporting precious GPU computation resources!

We also would like to thank MMDetection team for producing this great object detection toolbox.

License

This project is released under the Apache 2.0 license.

References

[1] Averaging Weights Leads to Wider Optima and Better Generalization; Pavel Izmailov, Dmitry Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson; Uncertainty in Artificial Intelligence (UAI), 2018

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022