VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

Related tags

Deep Learningvimpac
Overview

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Authors: Hao Tan, Jie Lei, Thomas Wolf, Mohit Bansal

Data Preprocessing

Please refer to video2token folder for the detailed README file.

For pre-training, the dataset is usually large, and we suggest to use FPS=2 during extraction. For downstream tasks, we suggest using FPS=16 that enables a higher frame rate for short videos.

We recommend to store the data locally at data/video_tokens. If different paths are used, please specify the path of VIDEO_CODE_PATHS and VIDEO_ANNO_PATHS in vimpac/data.py.

Pre-Trained Weights

We provide the pre-trained weights with their links. Please download the pre-trained weight and extract them under snap/.

Pre-Training

The default pre-training uses the HowTo100M dataset. The pre-training data could be switched to Kinetics-700 and other datasets by specifying the --dataset-name argument. We have validated that the mask-then-predict task works reasonablely well on Kinetics-700 datasets. However, the average length of video clips inside K-700 is 10 seconds thus not sure supporting the long-range contrastive learning.

Small Model

We first provide the script to pre-train a small model (6 layers, 512 dimensions, 256 frame-size, and 5 clip length):

bash scripts/pretrain/small.sh 0,1,2,3

We here annotate some essential arguments inside the pre-training scripts. For a full descriptions for all the arguments, please check param.py

We also provide two debugging options:

# bash scripts/pretrain/small.sh 0,1,2,3 --tqdm        # Show progress bar.
# bash scripts/pretrain/small.sh 0,1,2,3 --debug       # Only run a few steps per epoch.

Large Model

We follow BERT to pre-train our large model in two stages. The first stage pretrains for 90 epochs using frame-size 128 and clip-length 5. The second stage pretrains for 10 epochs using frame-size 256 and clip-length 5.

Scripts for the first stage:

bash scripts/pretrain/large.sh 0,1,2,3

Then we could directly run the script for the second stage without any further changes. It will load the last snapshot from the first stage, do interpolation for larger spatial size, and continue pre-training.

bash scripts/pretrain/large_frame256cont.sh 0,1,2,3

Fine-Tuning

After run the pre-training in pre-training or download the pre-trained weights from pre-trained-weights, we fine-tune the models on several downstream tasks. The arguments in these scripts are consistent with the hyperparameters in the paper. Please refer to Table 11 and Table 12 of our paper for a detailed list of all these hyperparameters.

SSV2

bash scripts/finetune/small_ssv2.sh 0,1,2,3

Diving48

bash scripts/finetune/small_diving48.sh 0,1,2,3

UCF101

bash scripts/finetune/small_ucf101.sh 0,1,2,3

HMDB51

bash scripts/finetune/small_hmdb51.sh 0,1,2,3

Change the Input Shape

Following ViT, we support the use of different input sizes from pre-training by interpolating the positional embedding. This is done by passing the --different-shape option. Otherwise, an error will pop up if the fine-tuning input shape is different from the pre-training. A larger input shape generally improves the results. We here take SSV2 as an example.

Longer clip length (10; default 5):

bash scripts/finetune/small_ssv2.sh 0,1,2,3 --different-shape --clip-len 10 --bs-per-gpu 4

Long clip length (10; default 5) + higher frame rate (4; default 2)

bash scripts/finetune/small_ssv2.sh 0,1,2,3 --different-shape --clip-len 10 --frame-rate 4 --bs-per-gpu 4

Long clip length (10; default 5) + higher frame rate (4; default 2) + larger input size (256; default 128). Please also make sure that VQ-VAE code with input-size 256 has been extracted as in Pre-processing.

bash scripts/finetune/small_ssv2.sh 0,1,2,3 --different-shape --clip-len 10 --frame-rate 4 --frame-size 256 --bs-per-gpu 2

Large Models

We provide scripts to run large models. Frame 128:

bash scripts/finetune/large_frame128_ucf101.sh 0,1,2,3

Frame 256:

bash scripts/finetune/large_frame256_ucf101.sh 0,1,2,3

The input shape could be changed as in change input shape. Our final model use the scripts of:

bash scripts/finetune/large_frame256_ucf101.sh 0,1,2,3 --different-shape --clip-len 10 --frame-rate 4 --frame-size 256 --bs-per-gpu 2

Acknowledgement

This work was granted access to the HPC resources of IDRIS under the allocation 20XX-AD011011621R1 made by GENCI. We thank Teven Le Scao and Victor Sanh for their help on the way.

Owner
Hao Tan
NLP @ UNC Chapel Hill
Hao Tan
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022