Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Overview

Contact and Human Dynamics from Monocular Video

This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan Russell, Ruben Villegas, and Jimei Yang. For more information, see the project webpage.

Teaser

Environment Setup

Note: the code in this repo has only been tested on Ubuntu 16.04.

First create and activate a virtual environment to install dependencies for the code in this repo. For example with conda:

  • conda create -n contact_dynamics_env python=3.6
  • conda activate contact_dynamics_env
  • pip install -r requirements.txt

Note the package versions in the requirements file are the exact ones tested on, but may need to be modified for your system. The code also uses ffmpeg.

This codebase requires the installation of a number of external dependencies that have their own installation instructions/environments, e.g., you will likely want to create a different environment just to run Monocular Total Capture below. The following external dependencies are only necessary to run the full pipeline (both contact detection and physical optimization). If you're only interested in detecting foot contacts, it is only necessary to install OpenPose.

To get started, from the root of this repo mkdir external.

Monocular Total Capture (MTC)

The full pipeline runs on the output from Monocular Total Capture (MTC). To run MTC, you must clone this fork which contains a number of important modifications:

  • cd external
  • git clone https://github.com/davrempe/MonocularTotalCapture.git
  • Follow installation instructions in that repo to set up the MTC environment.

TOWR

The physics-based optimization takes advantage of the TOWR library. Specifically, this fork must be used:

  • cd external
  • git clone https://github.com/davrempe/towr.git
  • Follow the intallation instructions to build and install the library using cmake.

Building Physics-Based Optimization

Important Note: if you did not use the HSL routines when building IPopt as suggested, in towr_phys_optim/phys_optim.cpp you will need to change the line solver->SetOption("linear_solver", "MA57"); to solver->SetOption("linear_solver", "mumps"); before building our physics-based optimization. This uses the slower MUMPS solver and should be avoided if possible.

After building and installing TOWR, we must build the physics-based optimization part of the pipeline. To do this from the repo root:

cd towr_phys_optim
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make

Downloads

Synthetic Dataset

The synthetic dataset used to train our foot contact detection network contains motion sequences on various Mixamo characters. For each sequence, the dataset contains rendered videos from 2 different camera viewpoints, camera parameters, annotated foot contacts, detected 2D pose (with OpenPose), and the 3D motion as a bvh file. Note, this dataset is only needed if you want to retrain the contact detection network.

To download the dataset:

  • cd data
  • bash download_full.sh to download the full (52 GB) dataset or bash download_sample.sh for a sample version (715 MB) with limited motions from 2 characters.

Pretrained Weights

To download pretrained weights for the foot contact detection network, run:

  • cd pretrained_weights
  • bash download.sh

Running the Pipeline on Real Videos

Next we'll walk through running each part of the pipeline on a set of real-world videos. A small example dataset with 2 videos is provided in data/example_data. Data should always be structured as shown in example_data where each video is placed in its own directory named the same as the video file to be processed - inputs and outputs for parts of the pipeline will be saved in these directories. There is a helper script to create this structure from a directory of videos.

The first two steps in the pipeline are running MTC/OpenPose on the video to get 3D/2D pose inputs, followed by foot contact detection using the 2D poses.

Running MTC

The first step is to run MTC and OpenPose. This will create the necessary data (2D and 3D poses) to run both foot contact detection and physical optimization.

The scripts/run_totalcap.py is used to run MTC. It is invoked on a directory containg any number of videos, each in their own directory, and will run MTC on all contained videos. The script runs MTC, post-processes the results to be used in the rest of the pipeline, and saves videos visualizing the final output. The script copies all the needed outputs (in particular tracked_results.json and the OpenPose detection openpose_results directly to the given data directory). To run MTC for the example data, first cd scripts then:

python run_totalcap.py --data ../data/example_data --out ../output/mtc_viz_out --totalcap ../external/MonocularTotalCapture

Alternatively, if you only want to do foot contact detection (and don't care about the physical optimization), you can instead run OpenPose by itself without MTC. There is a helper script to do this in scripts:

python run_openpose.py --data ../data/example_data --out ../data/example_data --openpose ../external/openpose --hands --face --save-video

This runs OpenPose and saves the outputs directly to the same data directory for later use in contact detection.

Foot Contact Detection

The next step is using the learned neural network to detect foot contacts from the 2D pose sequence.

To run this, first download the pretrained network weights as detailed above. Then to run on the example data cd scripts and then:

python run_detect_contacts.py --data ../data/example_data --weights ../pretrained_weights/contact_detection_weights.pth

This will detect and save foot contacts for each video in the data directory to a file called foot_contacts.npy. This is simply an Fx4 array where F is the number of frames; for each frame there is a binary contact label for the left heel, left toe, right heel, and right toe, in that order.

You may also optionally add the --viz flag to additionally save a video with overlaid detections (currently requires a lot of memory for videos more than a few seconds long).

Trajectory Optimization

Finally, we are able to run the kinematic optimization, retargeting, and physics-based optimization steps.

There is a single script to run all these - simply make sure you are in the scripts directory, then run:

python run_phys_mocap.py --data ../data/example_data --character ybot

This command will do the optimization directly on the YBot Mixamo character (ty and skeletonzombie are also availble). To perform the optimization on the skeleton estimated from video (i.e., to not use the retargeting step), give the argument --character combined.

Each of the steps in this pipeline can be run individually if desired, see how to do this in run_phys_mocap.py.

Visualize Results with Blender

We can visualize results on a character using Blender. Before doing this, ensure Blender v2.79b is installed.

You will first need to download the Blender scene we use for rendering. From the repo root cd data then bash download_viz.sh will place viz_scene.blend in the data directory. Additionally, you need to download the character T-pose FBX file from the Mixamo website; in this example we are using the YBot character.

To visualize the result for a sequence, make sure you are in the src directory and use something like:

blender -b -P viz/viz_blender.py -- --results ../data/example_data/dance1 --fbx ../data/fbx/ybot.fbx --scene ../data/viz_scene.blend --character ybot --out ../output/rendered_res --fps 24 --draw-com --draw-forces

Note that there are many options to customize this rendering - please see the script for all these. Also the side view is set up heuristically, you may need to manually tune setup_camera depending on your video.

Training and Testing Contact Detection Network on Synthetic Data

To re-train the contact detection network on the synthetic dataset and run inference on the test set use the following:

>> cd src
# Train the contact detection network
>> python contact_learning/train.py --data ../data/synthetic_dataset --out ../output/contact_learning_results
# Run detection on the test set
>> python contact_learning/test.py --data ../data/synthetic_dataset --out ../output/contact_learning_results --weights-path ../output/contact_learning_results/op_only_weights_BEST.pth --full-video

Citation

If you found this code or paper useful, please consider citing:

@inproceedings{RempeContactDynamics2020,
    author={Rempe, Davis and Guibas, Leonidas J. and Hertzmann, Aaron and Russell, Bryan and Villegas, Ruben and Yang, Jimei},
    title={Contact and Human Dynamics from Monocular Video},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    year={2020}
}

Questions?

If you run into any problems or have questions, please create an issue or contact Davis ([email protected]).

Owner
Davis Rempe
Davis Rempe
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Ian Covert 130 Jan 01, 2023
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022