Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Overview

Awesome AI-ML-DL Awesome License: CC BY-SA 4.0

Better NLP: Better NLP

NLP Java: NLP Java | NLP Clojure: NLP Clojure | NLP Kotlin: NLP Kotlin | NLP Scala: NLP Scala |
NLP using DL4J (cuda) NLP using DL4J (cuda)

Tribuo: Tribuo | DeepNetts: DeepNetts | Dataiku DSS: Dataiku DSS | Grakn: Grakn | Jupyter-Java: Jupyter-Java |
MLPMNist using DL4J: MLPMNist using DL4J | Zeppelin: Zeppelin


Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.

Watching the repo will keep you posted of all the changes (commits) that go into the repo.

Also, please SPONSOR us, find out how-to!

Contributing

Contributions are very welcome, please share back with the wider community (and get credited for it)!

Please have a look at the CONTRIBUTING guidelines, also have a read about our licensing policy.

Sponsoring

With GitHub's new project sponsor program you can now sponsor projects like this, see how.

Comments
  • Wolfram Neural Net Repository

    Wolfram Neural Net Repository

    Probably a useful link to add to this repo (under Mathematica / Wolfram Language):

    https://resources.wolframcloud.com/NeuralNetRepository/

    The Wolfram Neural Net Repository is a public resource that hosts an expanding collection of trained and untrained neural network models, suitable for immediate evaluation, training, visualization, transfer learning and more.

    enhancement Hacktoberfest2019 
    opened by arnoudbuzing 7
  • Why to add

    Why to add "Tutorial" in names of R articles added?

    Articles are self explanatory from their headings. I feel adding tutorial specifically under R subsection is somewhat should not be there.

    Just like other good articles by great authors, their heading should be kept unchanged.

    opened by dA505819 5
  • Broken link

    Broken link

    Reached this awesome list from the : akullpp/awesome-java .

    https://github.com/neomatrix369/awesome-ai-ml-dl/blob/master/details/java-jvm.md#java

    Using Java for Artificial Intelligence (Tweet)

    This link is broken.

    Thank you!

    opened by tjj225 4
  • Added Computer Vision topic under Julia, Python and R

    Added Computer Vision topic under Julia, Python and R

    Purpose : To add materials of Computer Vision field into the repository as it had none.

    Contents : Motivation (intro to computer vision), Digital image processing, Opencv and its tutorials, Courses from other organisations, Conferences to follow and some famous computer vision blogs.

    @neomatrix369 please check the pull request. Waiting for your feedback on it.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Need for adding Computer Vision topic under Julia, Python and R

    Need for adding Computer Vision topic under Julia, Python and R

    Computer vision topic should focus on the basics of image processing , different filters used, and will then move onto CNNs and deep learning methods of computer vision.

    enhancement Hacktoberfest2019 
    opened by jerryfrancis-97 3
  • Broken link for Object tracking under Image processing heading

    Broken link for Object tracking under Image processing heading

    https://github.com/virgili0/Virgilio/blob/master/serving/inferno/computer-vision/object-tracking/object-tracking.ipynb is giving error no. 404, under heading Image Processing under Computer Vision in /details/julia-python-and-r.md

    deadlinks 
    opened by therc01 2
  • Add Flyte

    Add Flyte

    Signed-off-by: Samhita Alla [email protected]

    Flyte is a workflow automation platform for complex, mission-critical data and ML processes at scale. A detailed overview of the features can be seen in the GitHub repo.

    enhancement 
    opened by samhita-alla 2
  • added measures.md #hacktoberfest

    added measures.md #hacktoberfest

    This PR is an extension to introduction to code-mixing and code-switching!

    • added a few important metrics and their descriptions useful for modeling code-mixing corpus
    • included useful resources which described the metrics in detail
    enhancement hacktoberfest hacktoberfest-accepted 
    opened by UmaGunturi 2
  • Add Automated Testing for Broken Links in Markdown Files

    Add Automated Testing for Broken Links in Markdown Files

    Requesting a new issue to be assigned to me:

    Add automated testing to ensure all links in markdown files are not broken, and alert when there are issues with links.

    @neomatrix369 - let me know if you want me to work on this issue or if it's not helpful for your project! I would love to contribute as part of hacktoberfest.

    enhancement deadlinks automation 
    opened by MattRudy 2
  • Find and fix broken/dead links

    Find and fix broken/dead links

    As see from #53 we can have broken/dead links, links that once worked can be unavailable for reasons outside the control of this project/repo!

    Hence I have decided to manually scan (for now) the repo from time to time for such links and fix them - if there is one. Here are the steps to take:

    New broken/dead links

    • find missing links using, markdown-link-check (see https://www.npmjs.com/package/markdown-link-check to find out how to install and use it)
    • once installed, use the below command in the root of the project:
    $ ls **/*.md | xargs -n 1 markdown-link-check --quiet
    
    ### This recursively finds all markdown files in the repo, 
    ### scans them and only reports those files which have 
    ### broken/dead links in them. 
    
    • try to fix the broken/dead links by hand
    • we are only looking for HTTP response code of 404, any other response codes can be ignored
    • if a fix cannot be found, best mark the link with a '[deadlink]' marker
    • in certain cases it's a good idea to leave the old link with the '[deadlink]' marker next to it even though we have found a new working one

    Existing broken/dead links across the repo

    Existing dead/broken links are marked with the '[deadlink]' marker.

    As part of this issue, fixing these links is also helpful - although if they are left in there it's cause their fix wasn't immediately available or found on searching on the relevant sources.

    Eventually, we can automate the task of finding such links via a GitHub action during GitHub events like commit, push or pull request creation.

    good first issue hacktoberfest 
    opened by neomatrix369 4
  • Add more features to the BetterNLP library

    Add more features to the BetterNLP library

    On the back of this discussion, @shahanesanket and I will take this further https://github.com/pandas-profiling/pandas-profiling/issues/278, some high-level ideas:

    • Missing value analysis
    • Text length analysis
      • 2.1 min, max, average, quantiles
      • 2.2 freq words, infrequent words (can include the deepmoji project's tokenizer. it's very robust)
      • 2.2 word cloud. (if it isn't a far stretched goal)

    @shahanesanket let's continue with our discussions here.

    enhancement hacktoberfest discussion 
    opened by neomatrix369 3
Owner
mani
3X @Kaggle Expert @Java champion, Polyglot, Software Crafter, performance, @graalvm, AI, ML, DL, NLP, Data Science, Developer communities, speaker, blogger
mani
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022