Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Related tags

Deep Learningpvnet
Overview

Good news! We release a clean version of PVNet: clean-pvnet, including

  1. how to train the PVNet on the custom dataset.
  2. Use PVNet with a detector.
  3. The training and testing on the tless dataset, where we detect multiple instances in an image.

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation

introduction

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, Hujun Bao
CVPR 2019 oral
Project Page

Any questions or discussions are welcomed!

Truncation LINEMOD Dataset

Check TRUNCATION_LINEMOD.md for information about the Truncation LINEMOD dataset.

Installation

One way is to set up the environment with docker: How to install pvnet with docker.

Thanks Joe Dinius for providing the docker implementation.

Another way is to use the following commands.

  1. Set up python 3.6.7 environment
pip install -r requirements.txt

We need compile several files, which works fine with pytorch v0.4.1/v1.1 and gcc 5.4.0.

For users with a RTX GPU, you must use CUDA10 and pytorch v1.1 built from CUDA10.

  1. Compile the Ransac Voting Layer
ROOT=/path/to/pvnet
cd $ROOT/lib/ransac_voting_gpu_layer
python setup.py build_ext --inplace
  1. Compile some extension utils
cd $ROOT/lib/utils/extend_utils

Revise the cuda_include and dart in build_extend_utils_cffi.py to be compatible with the CUDA in your computer.

sudo apt-get install libgoogle-glog-dev=0.3.4-0.1
sudo apt-get install libsuitesparse-dev=1:4.4.6-1
sudo apt-get install libatlas-base-dev=3.10.2-9
python build_extend_utils_cffi.py

If you cannot install libsuitesparse-dev=1:4.4.6-1, please install libsuitesparse, run build_ceres.sh and move ceres/ceres-solver/build/lib/libceres.so* to lib/utils/extend_utils/lib.

Add the lib under extend_utils to the LD_LIBRARY_PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/pvnet/lib/utils/extend_utils/lib

Dataset Configuration

Prepare the dataset

Download the LINEMOD, which can be found at here.

Download the LINEMOD_ORIG, which can be found at here.

Download the OCCLUSION_LINEMOD, which can be found at here.

Create the soft link

mkdir $ROOT/data
ln -s path/to/LINEMOD $ROOT/data/LINEMOD
ln -s path/to/LINEMOD_ORIG $ROOT/data/LINEMOD_ORIG
ln -s path/to/OCCLUSION_LINEMOD $ROOT/data/OCCLUSION_LINEMOD

Compute FPS keypoints

python lib/utils/data_utils.py

Synthesize images for each object

See pvnet-rendering for information about the image synthesis.

Demo

Download the pretrained model of cat from here and put it to $ROOT/data/model/cat_demo/199.pth.

Run the demo

python tools/demo.py

If setup correctly, the output will look like

cat

Visualization of the voting procedure

We add a jupyter notebook visualization.ipynb for the keypoint detection pipeline of PVNet, aiming to make it easier for readers to understand our paper. Thanks for Kudlur, M 's suggestion.

Training and testing

Training on the LINEMOD

Before training, remember to add the lib under extend_utils to the LD_LIDBRARY_PATH

export LD_LIDBRARY_PATH=$LD_LIDBRARY_PATH:/path/to/pvnet/lib/utils/extend_utils/lib

Training

python tools/train_linemod.py --cfg_file configs/linemod_train.json --linemod_cls cat

Testing

We provide the pretrained models of each object, which can be found at here.

Download the pretrained model and move it to $ROOT/data/model/{cls}_linemod_train/199.pth. For instance

mkdir $ROOT/data/model
mv ape_199.pth $ROOT/data/model/ape_linemod_train/199.pth

Testing

python tools/train_linemod.py --cfg_file configs/linemod_train.json --linemod_cls cat --test_model

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@inproceedings{peng2019pvnet,
  title={PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation},
  author={Peng, Sida and Liu, Yuan and Huang, Qixing and Zhou, Xiaowei and Bao, Hujun},
  booktitle={CVPR},
  year={2019}
}

Acknowledgement

This work is affliated with ZJU-SenseTime Joint Lab of 3D Vision, and its intellectual property belongs to SenseTime Group Ltd.

Copyright (c) ZJU-SenseTime Joint Lab of 3D Vision. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
yufan 81 Dec 08, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022