Awesome Weak-Shot Learning

Overview

Awesome Weak-Shot Learning Awesome

In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base categories have full annotations while novel categories only have weak annotations. In different tasks, weak annotation could be provided in different forms, e.g., noisy label for classification, image label for object detection, image label/bounding box for segmentation.

The comparison between weak-shot learning and zero/few-shot learning is illustrated below. In all three settings, all categories are split into non-overlapped base categories and novel categories. In all three settings, base categories have abundant fully-annotated training samples. In zero-shot learning, novel categories have no training samples, so class-level representations are required to bridge the gap between base categories and novel categories. In few-shot learning, novel categories have limited training samples. In weak-shot leanring, novel categories have abundant weakly-annotated training samples.

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Survey

  • Li Niu: "Weak Novel Categories without Tears: A Survey on Weak-Shot Learning." arXiv preprint arXiv:2110.02651 (2021). [arXiv]

Weak-Shot Classification

Base category: clean label; Novel category: noisy label (weak-shot)

  • Junjie Chen, Li Niu, Liu Liu, Liqing Zhang: "Weak-shot Fine-grained Classification via Similarity Transfer." NeurIPS (2021) [arXiv] [code]

Weak-Shot Object Detection

Base category: bounding box; Novel category: image label (chaotic names: mixed-supervised, cross-supervised, partially-supervised, weak-shot)

  • Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick, Trevor Darrell, Kate Saenko: "LSDA: Large Scale Detection Through Adaptation." NIPS (2014) [paper] [code]
  • Joseph Redmon, Ali Farhadi: "YOLO9000: Better, Faster, Stronger." CVPR (2017) [paper] [code]
  • Bharat Singh, Hengduo Li, Abhishek Sharma, Larry S. Davis: "R-FCN-3000 at 30fps: Decoupling detection and classification." CVPR (2018) [paper] [code]
  • Yan Li, Junge Zhang, Kaiqi Huang, Jianguo Zhang: "Mixed Supervised Object Detection with Robust Objectness Transfer." T-PAMI (2018) [paper] [arXiv]
  • Jason Kuen, Federico Perazzi, Zhe Lin, Jianming Zhang, Yap-Peng Tan: "Scaling Object Detection by Transferring Classification Weights." ICCV (2019) [paper] [code]
  • Yuanyi Zhong, Jianfeng Wang, Jian Peng, Lei Zhang: "Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer." ECCV (2020) [paper] [arXiv] [code]
  • Ye Guo, Yali Li, Shengjin Wang: "Cs-r-fcn: Cross-supervised Learning for Large-scale Object Detection." ICASSP (2020) [arXiv]
  • Zitian Chen, Zhiqiang Shen, Jiahui Yu, Erik Learned-Miller: "Cross-Supervised Object Detection." arXiv preprint arXiv:2006.15056 (2020). [arXiv]
  • Yan Liu, Zhijie Zhang, Li Niu, Junjie Chen, Liqing Zhang: "Mixed Supervised Object Detection by Transferring Mask Prior and Semantic Similarity." NeurIPS (2021) [code]

Weak-Shot Semantic Segmentation

Base category: semantic mask; Novel category: image label (weak-shot)

  • Siyuan Zhou, Li Niu, Jianlou Si, Chen Qian, Liqing Zhang: "Weak-shot Semantic Segmentation by Transferring Semantic Affinity and Boundary." arXiv preprint arXiv:2110.01519 (2021). [arXiv]

Weak-Shot Instance Segmentation

Base category: instance mask; Novel category: bounding box (partially-supervised)

  • Ronghang Hu, Piotr Dollar, Kaiming He, Trevor Darrell, Ross Girshick: "Learning to Segment Every Thing." CVPR (2018) [paper] [code]
  • Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin: "ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors." ICCV (2019) [paper] [arXiv]
  • Yanzhao Zhou, Xin Wang, Jianbin Jiao, Trevor Darrell, Fisher Yu: "Learning Saliency Propagation for Semi-Supervised Instance Segmentation." CVPR (2020) [paper] [code]
  • Qi Fan, Lei Ke, Wenjie Pei, Chi-Keung Tang, Yu-Wing Tai: "Commonality-Parsing Network across Shape and Appearance for Partially Supervised Instance Segmentation." ECCV (2020) [arXiv] [code]
  • David Biertimpel, Sindi Shkodrani, Anil S. Baslamisli, Nora Baka: "Prior to Segment: Foreground Cues for Weakly Annotated Classes in Partially Supervised Instance Segmentation." arXiv preprint arXiv:2011.11787 (2020) [arXiv] [code]
  • Vighnesh Birodkar, Zhichao Lu, Siyang Li, Vivek Rathod, Jonathan Huang: "The Surprising Impact of Mask-head Architecture on Novel Class Segmentation." arXiv preprint arXiv:2104.00613 (2021) [arXiv] [code]
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022