This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Related tags

Deep LearningGPRGNN
Overview

GPRGNN

This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Hidden state feature extraction is performed by a neural networks using individual node features propagated via GPR. Note that both the GPR weights and parameter set of the neural network are learned simultaneously in an end-to-end fashion (as indicated in red).

The learnt GPR weights of the GPR-GNN on real world datasets. Cora is homophilic while Texas is heterophilic (Here, H stands for the level of homophily defined in the main text, Equation (1)). An interesting trend may be observed: For the heterophilic case the weights alternate from positive to negative with dampening amplitudes. The shaded region corresponds to a 95% confidence interval.

Requirement:

pytorch
pytorch-geometric
numpy

Run experiment with Cora:

go to folder src

python train_model.py --RPMAX 2 \
        --net GPRGNN \
        --train_rate 0.025 \
        --val_rate 0.025 \
        --dataset cora 

Create cSBM dataset:

go to folder src

source create_cSBM_dataset.sh

The total size of cSBM datasets we used is over 1GB hence they are not included in this repository, but we do have a sample of the dataset in data/cSBM_demo. We reccommend you to regenerate these datasets using the format of above script, start its name with 'cSBM_data' and change the parameter to what we choose in section A.10 in Appendix of our paper.

Repreduce results in Table 2:

To reproduce the results in Table 2 of our paper you need to first perform hyperparameter tuning. For details of optimization of all models, please refer to section A.9 in Appendix of our paper. Here are the settings for GPRGNN and APPNP:

We choose random walk path lengths with K = 10 and use a 2-layer (MLP) with 64 hidden units for the NN component. For the GPR weights, we use different initializations including PPR with , or and the default random initialization in pytorch. Similarly, for APPNP we search the optimal . For other hyperparameter tuning, we optimize the learning rate over {0.002, 0.01, 0.05} and weight decay {0.0, 0.0005} for all models.

Here is a list of hyperparameters for your reference:

  • For cora and citeseer, choosing different alpha doesn't make big difference. So you can choose alpha = 0.1.
  • For pubmed, we choose lr = 0.05, alpha = 0.2, wd = 0.0005 and add dprate = 0.5 (dropout for GPR part).
  • For computers, we choose lr = 0.05, alpha = 0.5 and wd = 0.
  • For Photo, we choose lr = 0.01, alpha = 0.5 and wd = 0.
  • For chameleon, we choose lr = 0.05, alpha = 1, wd = 0 and dprate = 0.7.
  • For Actor, we choose lr = 0.01, alpha = 0.9, wd = 0.
  • For squirrel, we choose lr = 0.05, alpha = 0, wd = 0, dprate = 0.7.
  • For Texas, we choose lr = 0.05, alpha = 1, wd = 0.0005.
  • For Cornell, we choose lr = 0.05, alpha = 0.9, wd = 0.0005.

Citation

Please cite our paper if you use this code in your own work:

@inproceedings{
chien2021adaptive,
title={Adaptive Universal Generalized PageRank Graph Neural Network},
author={Eli Chien and Jianhao Peng and Pan Li and Olgica Milenkovic},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=n6jl7fLxrP}
}

Feel free to email us([email protected], [email protected]) if you have any further questions.

Owner
Jianhao
Jianhao
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021