Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Overview

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Deep Learning to Improve Breast Cancer Detection on Screening Mammography (End-to-end Training for Whole Image Breast Cancer Screening using An All Convolutional Design)

Li Shen, Ph.D. CS

Icahn School of Medicine at Mount Sinai

New York, New York, USA

Fig1

Introduction

This is the companion site for our paper that was originally titled "End-to-end Training for Whole Image Breast Cancer Diagnosis using An All Convolutional Design" and was retitled as "Deep Learning to Improve Breast Cancer Detection on Screening Mammography". The paper has been published here. You may also find the arXiv version here. This work was initially presented at the NIPS17 workshop on machine learning for health. Access the 4-page short paper here. Download the poster.

For our entry in the DREAM2016 Digital Mammography challenge, see this write-up. This work is much improved from our method used in the challenge.

Whole image model downloads

A few best whole image models are available for downloading at this Google Drive folder. YaroslavNet is the DM challenge top-performing team's method. Here is a table for individual downloads:

Database Patch Classifier Top Layers (two blocks) Single AUC Augmented AUC Link
DDSM Resnet50 [512-512-1024]x2 0.86 0.88 download
DDSM VGG16 512x1 0.83 0.86 download
DDSM VGG16 [512-512-1024]x2 0.85 0.88 download
DDSM YaroslavNet heatmap + max pooling + FC16-8 + shortcut 0.83 0.86 download
INbreast VGG16 512x1 0.92 0.94 download
INbreast VGG16 [512-512-1024]x2 0.95 0.96 download
  • Inference level augmentation is obtained by horizontal and vertical flips to generate 4 predictions.
  • The listed scores are single model AUC and prediction averaged AUC.
  • 3 Model averaging on DDSM gives AUC of 0.91
  • 2 Model averaging on INbreast gives AUC of 0.96.

Patch classifier model downloads

Several patch classifier models (i.e. patch state) are also available for downloading at this Google Drive folder. Here is a table for individual download:

Model Train Set Accuracy Link
Resnet50 S10 0.89 download
VGG16 S10 0.84 download
VGG19 S10 0.79 download
YaroslavNet (Final) S10 0.89 download
Resnet50 S30 0.91 download
VGG16 S30 0.86 download
VGG19 S30 0.89 download

With patch classifier models, you can convert them into any whole image classifier by adding convolutional, FC and heatmap layers on top and see for yourself.

A bit explanation of this repository's file structure

  • The .py files under the root directory are Python modules to be imported.
  • You shall set the PYTHONPATH variable like this: export PYTHONPATH=$PYTHONPATH:your_path_to_repos/end2end-all-conv so that the Python modules can be imported.
  • The code for patch sampling, patch classifier and whole image training are under the ddsm_train folder.
  • sample_patches_combined.py is used to sample patches from images and masks.
  • patch_clf_train.py is used to train a patch classifier.
  • image_clf_train.py is used to train a whole image classifier, either on top of a patch classifier or from another already trained whole image classifier (i.e. finetuning).
  • There are multiple shell scripts under the ddsm_train folder to serve as examples.

Some input files' format

I've got a lot of requests asking about the format of some input files. Here I provide the first few lines and hope they can be helpful:

roi_mask_path.csv

patient_id,side,view,abn_num,pathology,type
P_00005,RIGHT,CC,1,MALIGNANT,calc
P_00005,RIGHT,MLO,1,MALIGNANT,calc
P_00007,LEFT,CC,1,BENIGN,calc
P_00007,LEFT,MLO,1,BENIGN,calc
P_00008,LEFT,CC,1,BENIGN_WITHOUT_CALLBACK,calc

pat_train.txt

P_00601
P_00413
P_01163
P_00101
P_01122

Transfer learning is as easy as 1-2-3

In order to transfer a model to your own data, follow these easy steps.

Determine the rescale factor

The rescale factor is used to rescale the pixel intensities so that the max value is 255. For PNG format, the max value is 65535, so the rescale factor is 255/65535 = 0.003891. If your images are already in the 255 scale, set rescale factor to 1.

Calculate the pixel-wise mean

This is simply the mean pixel intensity of your train set images.

Image size

This is currently fixed at 1152x896 for the models in this study. However, you can change the image size when converting from a patch classifier to a whole image classifier.

Finetune

Now you can finetune a model on your own data for cancer predictions! You may check out this shell script. Alternatively, copy & paste from here:

TRAIN_DIR="INbreast/train"
VAL_DIR="INbreast/val"
TEST_DIR="INbreast/test"
RESUME_FROM="ddsm_vgg16_s10_[512-512-1024]x2_hybrid.h5"
BEST_MODEL="INbreast/transferred_inbreast_best_model.h5"
FINAL_MODEL="NOSAVE"
export NUM_CPU_CORES=4

python image_clf_train.py \
    --no-patch-model-state \
    --resume-from $RESUME_FROM \
    --img-size 1152 896 \
    --no-img-scale \
    --rescale-factor 0.003891 \
    --featurewise-center \
    --featurewise-mean 44.33 \
    --no-equalize-hist \
    --batch-size 4 \
    --train-bs-multiplier 0.5 \
    --augmentation \
    --class-list neg pos \
    --nb-epoch 0 \
    --all-layer-epochs 50 \
    --load-val-ram \
    --load-train-ram \
    --optimizer adam \
    --weight-decay 0.001 \
    --hidden-dropout 0.0 \
    --weight-decay2 0.01 \
    --hidden-dropout2 0.0 \
    --init-learningrate 0.0001 \
    --all-layer-multiplier 0.01 \
    --es-patience 10 \
    --auto-batch-balance \
    --best-model $BEST_MODEL \
    --final-model $FINAL_MODEL \
    $TRAIN_DIR $VAL_DIR $TEST_DIR

Some explanations of the arguments:

  • The batch size for training is the product of --batch-size and --train-bs-multiplier. Because training uses roughtly twice (both forward and back props) the GPU memory of testing, --train-bs-multiplier is set to 0.5 here.
  • For model finetuning, only the second stage of the two-stage training is used here. So --nb-epoch is set to 0.
  • --load-val-ram and --load-train-ram will load the image data from the validation and train sets into memory. You may want to turn off these options if you don't have sufficient memory. When turned off, out-of-core training will be used.
  • --weight-decay and --hidden-dropout are for stage 1. --weight-decay2 and --hidden-dropout2 are for stage 2.
  • The learning rate for stage 1 is --init-learningrate. The learning rate for stage 2 is the product of --init-learningrate and --all-layer-multiplier.

Computational environment

The research in this study is carried out on a Linux workstation with 8 CPU cores and a single NVIDIA Quadro M4000 GPU with 8GB memory. The deep learning framework is Keras 2 with Tensorflow as the backend.

About Keras version

It is known that Keras >= 2.1.0 can give errors due an API change. See issue #7. Use Keras with version < 2.1.0. For example, Keras=2.0.8 is known to work.

TERMS OF USE

All data is free to use for non-commercial purposes. For commercial use please contact MSIP.

Owner
Li Shen
I'm an academic researcher with many years of experience developing machine learning algorithms and bioinformatic software and analyzing genomic data.
Li Shen
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022