Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

Related tags

Deep Learningpmapper
Overview

pmapper

pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and adaptable algorithm for these problems. An implementation of the contemporary Richardson-Lucy algorithm is included for comparison.

The name of this repository is an homage to MTF-Mapper, a slanted edge MTF measurement program written by Frans van den Bergh.

The implementations of all algorithms in this repository are CPU/GPU agnostic and performant, able to perform 4K restoration at hundreds of iterations per second.

Usage

Basic PMAP, Multi-frame PMAP

import pmapper

img = ... # load an image somehow
psf = ... # acquire the PSF associated with the img
pmp = pmapper.PMAP(img, psf)  # "PMAP problem"
while pmp.iter < 100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

In simulation studies, the true object can be compared to fHat (for example, mean square error) to track convergence. If the psf is "larger" than the image, for example a 1024x1024 image and a 2048x2048 psf, the output will be super-resolved at the 2048x2048 resolution.

PMAP is able to combine multiple images of the same objec with different PSFs into one with the multi-frame variant. This can be used to combat dynamical atmospheric seeing conditions, line of sight jitter, or even perform incoherent aperture synthesis; rendering images from sparse aperture systems that mimic or exceed a system with a fully filled aperture.

import pmapper

# load a sequence of images; could be any iterable,
# or e.g. a kxmxn ndarray, with k = num frames
# psfs must have the same "size" (k) and correspond
# to the images in the same indices
imgs = ...
psfs = ...
pmp = pmapper.MFPMAP(imgs, psfs)  # "PMAP problem"
while pmp.iter < len(imgs)*100:  # number of iterations
    fHat = pmp.step()  # fHat is the object estimate

Multi-frame PMAP cycles through the images and PSFs, so the total number of iterations "should" be an integer multiple of the number of source images. In this way, each image is "visited" an equal number of times.

GPU computing

As mentioned previously, pmapper can be used trivially on a GPU. To do so, simply execute the following modification:

import pmapper
from pmapper import backend

import cupy as cp
from cupyx.scipy import (
    ndimage as cpndimage,
    fft as cpfft
)

backend.np._srcmodule = cp
backend.fft.fft = cpfft
backend.ndimage._srcmodule = cpndimage

# if your data is not on the GPU already
img = cp.array(img)
psf = cp.array(psf)

# ... do PMAP, it will run on a GPU without changing anything about your code

fHatCPU = fHat.get()

cupy is not the only way to do so; anything that quacks like numpy, scipy fft, and scipy ndimage can be used to substitute the backend. This can be done dynamically and at runtime. You likely will want to cast your imagery from fp64 to fp32 for performance scaling on the GPU.

Owner
NASA Jet Propulsion Laboratory
A world leader in the robotic exploration of space
NASA Jet Propulsion Laboratory
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot šŸÆ A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. PƩrez Maurera. Fernando is

Fernando Benjamƭn PƉREZ MAURERA 0 Jan 19, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-MuƱoz 10 Mar 15, 2022