Deep Learning Package based on TensorFlow

Overview

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license.

The project was started in May 2021 by YeongHyeon Park.
This project does not limit for participation.
Contribute now!

Installation

Dependencies

whiteboxlayer requires:

  • Numpy: 1.18.5
  • Scipy: 1.4.1
  • TensorFlow: 2.3.0

User installation

You can install the white-box-layer via simple command as below.

$ pip install whiteboxlayer

Development

We welcome new contributors of all experience levels. The white-box-layer community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We've included some basic information in this README.

Example

Example for Convolutional Neural Network

An example of constructing a convolutional neural network is covered. The relevant source code is additionally provided following links.

Define TensorFlow based module

class Neuralnet(tf.Module):

    def __init__(self, **kwargs):
        super(Neuralnet, self).__init__()

        self.who_am_i = kwargs['who_am_i']
        self.dim_h = kwargs['dim_h']
        self.dim_w = kwargs['dim_w']
        self.dim_c = kwargs['dim_c']
        self.num_class = kwargs['num_class']
        self.filters = kwargs['filters']

        self.layer = wbl.Layers()

        self.forward = tf.function(self.__call__)

    @tf.function
    def __call__(self, x, verbose=False):

        logit = self.__nn(x=x, name=self.who_am_i, verbose=verbose)
        y_hat = tf.nn.softmax(logit, name="y_hat")

        return logit, y_hat

    def __nn(self, x, name='neuralnet', verbose=True):

        for idx, _ in enumerate(self.filters[:-1]):
            if(idx == 0): continue
            x = self.layer.conv2d(x=x, stride=1, \
                filter_size=[3, 3, self.filters[idx-1], self.filters[idx]], \
                activation='relu', name='%s-%dconv' %(name, idx), verbose=verbose)
            x = self.layer.maxpool(x=x, ksize=2, strides=2, \
                name='%s-%dmp' %(name, idx), verbose=verbose)

        x = tf.reshape(x, shape=[x.shape[0], -1], name="flat")
        x = self.layer.fully_connected(x=x, c_out=self.filters[-1], \
                activation='relu', name="%s-clf0" %(name), verbose=verbose)
        x = self.layer.fully_connected(x=x, c_out=self.num_class, \
                activation=None, name="%s-clf1" %(name), verbose=verbose)

        return x

Initializing module

model = Neuralnet(\
    who_am_i="CNN", \
    dim_h=28, dim_w=28, dim_c=1, \
    num_class=10, \
    filters=[1, 32, 64, 128])

dummy = tf.zeros((1, model.dim_h, model.dim_w, model.dim_c), dtype=tf.float32)
model.forward(x=dummy, verbose=True)

Results

Conv (CNN-1conv) (1, 28, 28, 1) -> (1, 28, 28, 32)
MaxPool (CNN-1mp) (1, 28, 28, 32) > (1, 14, 14, 32)
Conv (CNN-2conv) (1, 14, 14, 32) -> (1, 14, 14, 64)
MaxPool (CNN-2mp) (1, 14, 14, 64) > (1, 7, 7, 64)
FC (CNN-clf0) (1, 3136) -> (1, 128)
FC (CNN-clf1) (1, 128) -> (1, 10)
Conv (CNN-1conv) (1, 28, 28, 1) -> (1, 28, 28, 32)
MaxPool (CNN-1mp) (1, 28, 28, 32) > (1, 14, 14, 32)
Conv (CNN-2conv) (1, 14, 14, 32) -> (1, 14, 14, 64)
MaxPool (CNN-2mp) (1, 14, 14, 64) > (1, 7, 7, 64)
FC (CNN-clf0) (1, 3136) -> (1, 128)
FC (CNN-clf1) (1, 128) -> (1, 10)
You might also like...
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Deep learning operations reinvented (for pytorch, tensorflow, jax and others)
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Deep learning with dynamic computation graphs in TensorFlow
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Owner
YeongHyeon Park
YeongHyeon Park
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022