Laser device for neutralizing - mosquitoes, weeds and pests

Overview

Laser device for neutralizing - mosquitoes, weeds and pests (in progress)

Tweet
Hardware demonstrations
Hardware demonstrations

Here I will post information for creating a laser device.

alt tag

A warning!!

Don't use the power laser!

The main limiting factor in the development of this technology is the danger of the laser may damage the eyes. The laser can enter a blood vessel and clog it, it can get into a blind spot where nerves from all over the eye go to the brain, you can burn out a line of "pixels" And then the damaged retina can begin to flake off, and this is the path to complete and irreversible loss of vision. This is dangerous because a person may not notice at the beginning of damage from a laser hit: there are no pain receptors there, the brain completes objects in damaged areas (remapping of dead pixels), and only when the damaged area becomes large enough person starts to notice that some objects not visible. We can develop additional security systems, such as human detection, audio sensors, etc. But in any case, we are not able to make the installation 100% safe, since even a laser can be reflected and damage the eye of a person who is not in the field of view of the device and at a distant distance. Therefore, this technology should not be used at home. My strong recommendation - don't use the power laser! I recommend making a device that will track an object using a safe laser pointer.

How It Works

To detect x,y coordinates initially we used Haar cascades in RaspberryPI after that yolov4-tiny in Jetson nano. For Y coordinates - stereo vision.
Calculation necessary value for the angle of mirrors.
RaspberryPI/JetsonNano by SPI sends a command for galvanometer via DAC mcp4922. Electrical scheme (here). From mcp4922 bibolar analog signal go to amplifair. Finally, we have -12 and + 12 V for control positions of the mirrors.

General information

The principle of operation
alt tag
Single board computer to processes the digital signal from the camera and determines positioning to the object, and transmits the digital signal to the analog display - 3, where digital-to-analog converts the signal to the range of 0-5V. Using a board with an operational amplifier, we get a bipolar voltage, from which the boards with the motor driver for the galvanometer are powered - 4, from where the signal goes to galvanometers -7. The galvanometer uses mirrors to change the direction of the laser - 6. The system is powered by the power supply - 5. Cameras 2 determine the distance to the object. The camera detects mosquito and transmits data to the galvanometer, which sets the mirrors in the correct position, and then the laser turns on.

Dimensions

alt tag
1 - PI cameras, 2 - galvanometer, 3 - Jetson nano, 4 - adjusting the position to the object, 5 - laser device, 6 - power supply, 7 - galvanometer driver boards, 8 - analog conversion boards

Galvanometer setting

In practice, the maximum deflection angle of the mirrors is set at the factory, but before use, it is necessary to check, for example, according to the documentation, our galvanometer had a step width of 30, but as it turned out we have only 20 alt tag
Maximum and minimum positions of galvanometer mirrors:
a - lower position - 350 for x mirror;
b - upper position - 550 for x mirror;
c - lower position - 00 for y mirror;
d - upper position - 250 for y mirror;

Determining the coordinates of an object

X,Y - coordinate

alt tag

Z-coordinate

We created GUI, source here. At the expense of computer vision, the position of the object in the X, Y plane is determined - based on which its ROI area is taken. Then we use stereo vision to compile a depth map and for a given ROI with the NumPy library tool - np.average we calculated the average value for the pixels of this area, which will allow us to calculate the distance to the object.
alt tag

You can find more detail in the published paper in preprint - Low-Cost Stereovision System (Disparity Map) For Few Dollars

Determining the angle of galvanometer mirror

angle of galvanometer mirror theory

The laser beam obeys all the optical laws of physics, therefore, depending on the design of the galvanometer, the required angle of inclination of the mirror – α, can be calculated through the geometrical formulas. In our case, through the tangent of the angle α, where it is equal to the ratio of the opposing side – X(Y) (position calculated by deep learning) to the adjacent side - Z (calculated by stereo vision).
alt tag

angle of galvanometer mirror practice

alt tag

We need more FPS

For single boards, computers are actual problems with FPS. For one object with Jetson was reached the next result for the Yolov4-tiny model.

Framework
with Keras: 4-5 FPS
with Darknet: 12-15 FPS
with Darknet Tensor RT: 24-27 FPS
with Darknet DeepStream: 23-26 FPS
with tkDNN: 30-35 FPS

You can find more detail in the published paper in arxiv - Increasing FPS for single board computers and embedded computers in 2021 (Jetson nano and YOVOv4-tiny). Practice and review

Demonstrations

In this video - a laser (the red point) tries to catch a yellow LED. It is an adjusting process but in fact, instead, a yellow LED can be a mosquito, and instead, the red laser can be a powerful laser.
Hardware demonstrations

Security questions

An additional device - a security module that will turn off the laser:

  • Use additional cameras to fix people
  • Audio sensors to capture voice and noise
  • To mechanically shoot down the laser
  • To use a thermal camera if there is any warm effect, turn it off - this is probably also possible to protect against fires consider not to overheat.
  • Teach the system to record the process of laser reflection from any random glass or other mirror surfaces (maybe before turning on the power laser - for checking turn on the simple laser).

Publication and Citation

  • Ildar, R. (2021). Machine vision for low-cost remote control of mosquitoes by power laser. Journal of Real-Time Image Processing
    availabe here
  • Rakhmatulin I, Andreasen C. (2020). A Concept of a Compact and Inexpensive Device for Controlling Weeds with Laser Beams. Agronomy
    availabe here
  • Rakhmatuiln I, Kamilaris A, Andreasen C. Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review. Remote Sensing. 2021; 13(21):4486. https://doi.org/10.3390/rs13214486

Contacts

For any questions write to me by mail - [email protected]

Owner
Ildaron
Electronic research engineer. Hardware. Machine vision.
Ildaron
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022